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1. Summary 
 

This report summarizes efforts to enhance our knowledge of swirl injector dynamics and behavior of 
energetic additives that may influence engine performance and stability.  The swirl injector work was carried 
over from a prior contract and concluded about one year ago.  Several publications have stemmed from these 
studies and we discovered fundamental resonance conditions for these injectors that provides a simple and 
practical mechanism to compute frequencies where substantial injector/chamber coupling may be present.  
These results were confirmed in experimental cold flow studies using a unique pulsator design developed in 
our group. 

The energetic particle studies have necessitated the development of an entirely new model, based on the 
PBE (Population Balance Equation).  The PBE has been integrated into the GEMS code developed in Prof. 
Merkle’s research group using a fast Eulerian method for advancing particle trajectories in time.  The 
DQMOM (Direct Quadrature Methods of Moments) [4] is used for representation of the particle size 
evolution given an initial distribution of sizes in the propellants. Along with PBE, the harsh condition in 
combustion chamber and nozzle leads us to develop models for laminar and turbulent collision(or 
coalescence) and breakup. The most models which can be found in chemistry and chemical engineering 
papers are limited only by the turbulent viscous effect in a low turbulence case. Unlike these investigations, 
the drops in a combustion chamber are exposed to a highly turbulent flow and consequently inertial effects 
of the drops induced by larger density of particles than the surrounding gas are important. So, we divide the 
collision and breakup mechanisms into four regimes and each regimes are modeled: laminar hydrodynamic 
collision/breakup, laminar aerodynamic collision/breakup, turbulent hydrodynamic collision/breakup, and 
turbulent aerodynamic collision/breakup. Here, the term, hydrodynamic, means the shearing motion of 
surrounding fluid is the main source for collision and breakup and the term, aerodynamic, means the 
velocity difference between the particle and the surrounding fluid is the main source for collision and 
breakup. 
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Technology Transfer 
 

The research group at Purdue is supporting a variety of developments throughout the industry.  Under 
NASA sponsorship, models that were initially created in the AFOSR program are being used to assess the 
forced response of plain orifice “pressure atomizers” under a wide range of conditions.  The models are 
being incorporated into the industry-standard Rocket Combustor Interactive Design (ROCCID) code that is 
used by NASA MSFC, U.S. Air Force, and numerous propulsion contractors.  The models will substantially 
improve the basic treatment of these atomizers and the Purdue team is working closely with Sierra 
Engineering on implementation of the new models.  Results from current AFOSR-sponsored efforts in the 
dynamics of swirl injectors has also been transmitted to NASA officials as well as prior simulations of shear 
coaxial injectors that are of great interest for new Crew Exploration Vehicle propulsion.  Our team works 
closely with small companies including Sierra Engineering and INSpace LLC to provide recommendations 
on injector designs.  We have also provided inputs on gas/gas injectors for potential application to lunar 
transfer vehicles under sponsorship from entities affiliated with Kistler Aerospace. Currently, we are 
working on nonlinear dynamics of swirl injectors and hope to be able to create a submodel for ROCCID that 
would incorporate these results and permit the code to assess a whole new class of injectors.  A comparable 
submodel for shear and swirl coaxial injectors is also under development under NASA sponsorship, 
although this is a rather low-level effort at present. 
 



2.  Research Objectives 
 

The understanding of the complex combustion phenomena present in liquid rocket engines begins with 
the fundamental process of fuel and oxidizer jet atomization.  The objective of this research has been to 
develop a model to account for agglomeration and breakup of oxides of energetic particles used in solid and 
liquid propellants.  The focus of the work is to understand the role these particles/droplets play in 
combustion stability and overall engine performance.  

At present there is substantial interest in studying the effect of nanoenergetic ingredients that have 
recently become available as a result of manufacturing process advances.  The nanomaterials provide for 
dramatic reductions in the time required for combustion events, but pose challenges in terms of 
incorporation in the propellant and in terms of the tremendously dense cloud of particles formed as a result 
of the combustion process.  In contrast to micron-sized particles used in prior research, agglomeration events 
become much more prevalent when nanomaterials are employed.  Breakup of agglomerates and potential 
wall impingement in the throat/nozzle region are also important processes that effect overall motor 
performance via the two-phase flow loss and nozzle erosion.  For this reason, a computational tool has been 
developed to assess agglomeration and breakup to assess particle size development for arbitrary combustor 
type (solid motor, liquid or hybrid rocket). The objectives of the study is to provide a theoretical basis for 
performance changes attributed to use of the nanoenergetic materials and to assess design parameters that 
influence such performance.   
 
 



3. Status of Research – Development of Energetic Particle 
Agglomeration and Breakup Methodology 
 

 

I. Introduction 

 
Metal additives are used to enhance the energy of solid propellants and are also given consideration for loading in 

liquid slurries for the same reason. Historically, micron-sized particles have been used for this application, but the 
recent large-scale manufacture of nano-sized particles by numerous vendors changes the overall number of particles 
and their average spacing dramatically. For this reason, collision/agglomeration processes that may have been 
neglected in the past could be of significant importance in these flows. In case of aluminum loaded solid propellants, 
Gany et al. [1] have experimentally investigate the Al/Al2O3 agglomerates forming on the propellant surface and 
observed a mean of about 250 µm when a propellant contains 6 µm aluminum particles. More recently, Najjar et al. [2] 
have referred to Sabnis et al. [3] and indicated that the typical values of the drop size distribution entering the 
combustion chamber are a mean of 150 µm for larger Aluminum particle and 1.5 µm for smaller Aluminum Oxide 
particle, which is bimodal. Nano-aluminum loaded solid propellants exhibit significantly different agglomeration near 
the surface and thus the size of agglomerates leaving the burning surface can be significantly smaller. Much less is 
known about the potential for agglomeration of particle loaded liquid slurries/gels, but regions of high shear that are 
present due to mixing processes could presumable provide substantial opportunities for agglomeration to occur. The 
idealized concept of particle size variation in rocket chamber is illustrated in Fig. 1.1. 

 
 

 
Fig.1.1 Illustration of the simple concept of droplet size variation in rocket chamber 

 
 
A simple analysis of the particle to particle distance in rocket chamber can show the substantial opportunities for 

agglomeration due to collision of particles. As Najjar et al. [2] have indicated that the burning of 20% aluminum 
loaded propellant of solid rocket booster results in approximately 1015 droplets of a mean diameter of 100 µm in a core 
volume of 63 m3. Following Friedlander [4], the average center-to-center distance between two adjacent particles 
distributed randomly is given by 0.55396N∞

-1/3 where N∞ is a number density of particles. Given the number density 
using the data of Najjar et al. (N∞=number of droplets/contained volume), the average distance between two adjacent 
particles is approximately 22 µm. Considering the droplets of a mean of 100 µm, and that the overall distance traveled 
is of the order of 10’s of meters, it is inevitable  that collisions will occur.  

The drops entering the chamber have a substantial effect on the rocket motor efficiency. The increase of the 
specific impulse and damping of chamber instability may be desirable effects. However, slag accumulation, nozzle 
erosion, and significant exhaust signature are disadvantages of aluminum loaded propellant. The particle phase 
characteristics, especially the number density (or mass concentration) and the drop size may be thought as governing 
parameters in assessing these effects. As particles exit the nozzle with velocities less than the gas depending on their 
size and drag characteristics a two-phase flow loss is always present in gas/particle nozzle flows. Therefore, the 
prediction of particle phase characteristics is of high importance in quantifying two-phase flow losses and ascertaining 
performance advantages. 

The past and present studies of two phase flow inside the rocket chamber have focused on the effects of the 
droplet on the gas flow by two-way coupling  [2, 5, 6] and the effects of the gas flow on the particle phase by one-way 
coupling [6]. However, none of these studies have been focusing on the effects of the collision and breakup of the 
droplets and consequent drop size change. Although Najjar et al. [2] have included the collision effects in assessing the 
drop mass change, the collision efficiency in their model is simply set as a constant, 0.25. 



The flow in a large rocket chamber can experience highly shearing motion due to its mean value change and 
highly turbulent motion at the same time. The high Reynolds number and the complex geometry of solid rocket 
chamber leads to the locally complex flow motion and two adjacent particles can be easily intercepted by the turbulent 
motion of flow. In addition, the highly shearing motion of mean flow near boundary layer can result in 
collision/breakup. Thereby, stochastic collision and breakup events can be one of the governing mechanism of the 
particle to particle interaction in a rocket chamber and collision and breakup due to mean flow motion can be another 
governing mechanism.  

The coalescence and breakup process of drops [7, 8] and bubbles [9] have been investigated in the chemistry and 
chemical engineering communities. The modeling of the coalescence and breakup processes in an agitated vessel have 
been important topic in chemistry to assess the mixing effects. Their interests are usually limited only by the turbulent 
viscous effect in a low turbulence case. Unlike the two immisicible liquids in an agitated vessel, the drops in a 
combustion chamber are exposed to a highly turbulent flow and consequently inertial effects of the drops induced by 
larger density of particles than the surrounding gas are important. These factors lead to difficulties in using 
coalescence and breakup models developed in chemistry but these models can be a good starting point in current 
modeling. 

Thus, the stochastic collision and breakup are addressed here and the collision/breakup in laminar flow and 
combination of the mean flow effects and turbulent flow effects are discussed too. We divide the collision and breakup 
mechanisms into four regimes and each regimes are modeled: laminar hydrodynamic collision/breakup, laminar 
aerodynamic collision/breakup, turbulent hydrodynamic collision/breakup, and turbulent aerodynamic 
collision/breakup. Here, the term, hydrodynamic, means the shearing motion of surrounding fluid is the main source 
for collision and breakup and the term, aerodynamic, means the velocity difference between the particle and the 
surrounding fluid is the main source for collision and breakup. More details on each term are given in Chapter 2. 

Along with the collision/breakup models, to assess the particle phase velocity field while holding the reasonable 
computational efficiency, an Eulerian-Fast (or Equilibrium) Eulerian two-phase methodology is chosen and the direct 
quadrature method moment (DQMOM) approximation is applied to the population balance equation (PBE) is used to 
model the coalescence and breakup. The details of methodology are provided in Chapter 2.   

The objective of the current study is to develop models for the collision and breakup processes applicable to a 
simulation of the two phase flow in a rocket chamber and carry a test simulation in a typical rocket chamber and 
attached converging-diverging nozzle. For this purpose, Computations were performed on a typical converging-
diverging nozzle attached to a rocket motor. The MMD (Mass Mean Diameter) was predicted according to different 
droplet characteristics and pressure at nozzle inlet and the scales of nozzle. To validate the models, the predicted 
results are compared to Hermsen [10]’s empirical correlation which predicts the particle size at the exit plane of SRM 
nozzle. The results are reasonably agreed with the empirical correlation. However, the simulation is very sensitive 
with the initial droplet condition (i.e. mean diameter and standard deviation of number distribution), therefore, the 
initial conditions of droplets should be chosen very carefully.  

  



 

II. Physical Modeling 
 

2.1 Flow field description – Navier-Stokes equation 

The 2-D unsteady Navier-Stokes equations for the Newtonian viscous carrier fluid are applicable under the 
continuum condition. The flow field is described by mass, momentum and energy conservation laws complemented by 
an appropriate equation of state and additional constitutive relations. Two turbulence equation from the k model of 
Wilcox [11] are added to the conservation form of the Navier-Stokes equations without any body forces and source 
terms induce by the particle phase: 
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The xi and ui represent Cartesian coordinates and velocity components, P and ρ represent the pressure and density, h0 
is the stagnation enthalpy, and K is the thermal conductivity. The A, A*, B, and B* are closure constants for Wilcox 
turbulence model, τij is the Reynolds stress tensor, and 

T
 is the turbulence eddy viscosity. These terms are given as 

follows: 
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The gas phase governing equations is solved under the platform of Generalized Equation and Mesh Solver (GEMS) 
code [12], which uses contemporary numerical methods to solve coupled systems of partial differential equations. 
 

  



2.2 Particle phase modeling – Population Balance Equation (PBE) 
 
2.2.1 QMOM (Quadrature Methods of Moments) 

The advection-diffusion equation for the number density field is given by 
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where n is is the particle number density, Ds is the diffusion coefficient, and S is the source term corresponding to 
coagulation and breakup. In a high Reynolds number or shearing flow, the diffusion term can be ignored and the 
advection-diffusion equation becomes a form similar to Smoulchowski’s equation [13] which is usually referred as the 
population balance equation.    

Using a one-way coupling approach, no mass, momentum, and energy interchange is considered. The particle 
phase is also assumed to be in thermally equilibrium state. The equation constructing agglomeration/breakage models 
for the dispersed phase is the population balance equation for the particle number density which is as follows [14]: 
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This equation assumes the same velocity of particle phase as the surrounding fluid. This equation expresses the fact 
that there is break-up and coalescence of droplets in the flow in the absence of interactions with walls. The term 

( , )n v t  is the number density function of the particle volume v  and U  is the velocity of the carrier fluid velocity due to 
Stokesian particle assumption. Here, 1  is the collision efficiency between particles with volume v  and v , 2  is the 
coalescence efficiency,  is the volume based collsion kernel that describes the frequency that particles of volume v  

and *v collide, a  is the fragment distribution function, and b  is the volume-based breakage kernel that is the 
frequency of breakage of a particle of volume v [14]. The first term on the right-hand side represents the formation of 
volume v  by collision and the second term represents the loss of the volume v  by collision. The third term represents 
the formation of volume v  by break-up and the last term represents the loss of volume v  by break-up. 

Solving this equation directly will require large computational power due to the presence of a large number of 
classes of particles. In addition, the source terms in the equation represent that the equations for each phase are highly 
coupled by each other. Therefore, the simplification of the governing equations is highly required. This can be 
achieved by QMOM (Quadrature Method of Moments) developed by Mcgraw [15] which is a powerful technique to 
determine the evolution of the lower-order moments of the distribution by a quadrature-based approximation. Wang et 
al. [14] have successfully applied this approach in Taylor Coutte flow, and Marchisio et al. [16] have showed that this 
approach leads to very small error comparing to discretized population balance equation (DPB). Wang et al. [14]’s 
length based QMOM approximation process of PBE is summarized here. The QMOM starts from defining the 
moments and taking quadrature approximation as follows: 
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( , )   (length based)        where ,  3

N
k k

k i i
i

N
z z

z i i
i

m n v t v dv w v

m n l t l dl w l l v z k
           

(2.6)
 

The term N is the order of the quadrature formula and v  is the particle volume. Accordingly, m0 is the total particle 
number density and m1 is the total particle volume concentration (same as particle volume fraction). Applying the 
length-based definition of moments to the transport equation of the particle density gives (superscript    is omitted 
here): 
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(2.7) 

The collision efficiency is *
1( , )ij i jl l , the coalescence efficiency is **

2 ( , )ij i jl l , the collision frequency of 
drops of length li and lj is ( , )ij i jl l , the breakage frequency of drops of length li is ( )i ib b l , and the daughter 
drop probability density function for the binary fragmentation is given by [14] 

(3 )/32 z z
i i

a l
                       

(2.8) 



The weights, wi and abscissas, il  are found via using of the product-difference (PD) algorithm. 

The product difference (PD) algorithm, which is used to find weights ( '
iw ) and abscissas ( il ) from the moments 

( '
zm ) while solving PBE, is given by Mcgraw [15] and Wang et al. [14] and it is summarized here. 
The first step is to obtain a matrix P as follows: 
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From the obtained matrix P, the coefficients ( i ) are given as follows: 
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(2.10) 

Then, a symmetric tridiagonal matrix S is obtained with the following diagonal ( ,d is ) and co-diagonal ( ,cd is ) 
components: 
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(2.11) 

After the symmetric tridiagonal matrix is obtained, the weights and abscissas are obtained by finding its eigenvalues 
and eigenvectors. The eigenvalues of the matrix S are the abscissas and the weights are given by 

2
0 1         for   =1i iw m i N' ' ,......,                     (2.12) 

where 1i is the first component of eigenvector i . The eigenvalues and eigenvectors are found by QL algorithm [17]. 
 
2.2.2 DQMOM and a fast Eulerian approach 

The number of drops in a chamber is typically very dense as explained above and then the particle phase is treated 
as continua. Therefore, the particle phase can be described via an Eulerian approach. For more simplicity and 
numerical efficiency, a fast (or equilibrium) Eulerian approach [2, 18] is used, such that mass and momentum 
conservation are automatically satisfied. In this approach, the particle phase velocity is handled as a field variable 
which is given by 

p
DUU U
Dt

 

                    
(2.13) 

where pU  and U  are the particle phase and gaseous phase velocity vectors, respectively. The term   is the relaxation 
time of the particle and /D Dt  is the material derivative in the Eulerian view.  

Because the particles have larger density than the gaseous phase, a distribution over particle velocities is needed to 
be considered. A multivariate number distribution function n depends on l, Ui, xi, t which can be denoted as n(l, Ui, xi, 
t). In this case, the transport equation is given by 
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which was proposed by Williams [19] for the LHS.  
To reduce the number of variables, the averaged number distribution function and the averaged drop phase 

velocities can be given as follows: 
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   (2.15) 

Integrating the equation (2.10) over the velocity assuming a Dirac delta function of velocity distribution yields the 
following PBE:  
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(2.16) 

which is same as the equation (2.4). Following Marchisio and Fox [20], the particle size distribution function can be 
treated as a sum of Dirac delta functions: 

 
1

N

q q
q

n l w l l


   
                           

(2.17) 



Substituting the equation (2.13) into the equation (2.12) and integrating the equation (2.12) gives the following the 
PBE approximated by DQMOM: 
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where q  is the weighted abscissas defined by q q qw l  . The source terms can be obtained by solving the following 
equation. 
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where ,m kS is the source term obtained in QMOM case and it is given in the RHS of the equation. The source terms, 

,w qS
 
and ,qS , can be obtained from the linear system Ax=b which each matrix is defined as follows:     
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2.3 Stochastic coalescence/breakup modeling 
 
2.3.1 Collision frequency kernel 
2.3.1.1 Spherical formulation of collision kernel 

Saffman and Turner [21] have studied the collision frequency kernel and presented two formulations of the 
collision kernel which are spherical formulation and cylindrical formulation. Comparing these two formulations, the 
collision kernel in cylindrical formulation is the cylindrical volume passing through the effective collision circle per 
unit time (in other words, the fluid volume flux across the effective collision area) and the collision kernel in spherical 
formulation is the volume of fluid across the collision sphere surface (volume flux across the collision sphere surface). 
The cylindrical formulation is possible in the special case of uniform shear flow which is same case with 
Smoulchowski [13] and the more general way will be the spherical formulation because the relative velocity between 
particles depends on the orientation of the collision radius Rc as it is described in Wang et al. [22]. 
 

r2

r1

Rc

x

y

Collision 
Sphere Streamline

 
      Fig.2.1 Schematic of collision of two droplets of radii r1 and r2 in 

                   Spherical formulation; the collision radius Rc is the sum of 
                   radii r1 and r2, the relative motion follows the streamlines 

 
The Saffman and Turner [21]’s spherical formulation is described in Figure 2.1. Considering two particles of radii 

r1 and r2, the moving particle is the particle of radius r2 supposing the particle of radius r1 as a fixed central particle. 
Assuming there is no distortion of flow field due to the existence of the particle, the particle r2 are moving along the 
streamlines. Defining the collision sphere as a sphere of radius Rc=r1+r2 centered on the fixed central particle, the 
collision frequency of the fixed central particle is the flux of the fluid having the velocity which is same as the relative 
velocity between two particles, multiplied by the number density of the moving particles. This flux should be induced 
by the relative velocity which is inwardly normal to the collision sphere because this directional component of 
velocity is only the component causing the collision. Denoting the unit vector outwardly normal to the collision sphere 
(radial direction of the collision sphere) as rn  and the relative velocity inwardly normal to the collision sphere as W , 
the flux Jl across the collision sphere is given by 

 rlJ W n dA
                                        

(2.21) 

The negative sign is given because the dot product between this velocity vector and outward normal vector is negative. 
Supposing that the particles are distributed in the flow, the collision frequency Nc which is the total number of 
collision between particles of the number densities n1 and n2 in unit volume and unit time is given by 

1 2  rcN n n W n dA
                                          

(2.22) 

Thus, the collision frequency function (or collision kernel) βl for the laminar flow is given by 
 rl lJ W n dA

                                    
(2.23) 

where dA is the area element on the surface of a sphere. 
Developing further for the turbulent flow, when the particles are randomly distributed and their fluctuating radial 

velocity component is wr (sign of this component are not decided yet, the effect of its mean component <Wr> is not 
considered), the mean flux Jt towards the collision sphere is given by 
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Assuming the outward and inward fluxes across the collision sphere are equal, this assumption can be expressed by 
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(2.25) 

Thus, the mean flux Jt towards the collision sphere is given by 
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(2.26) 

For isotropic turbulence, the collision kernel βt is given by 
22t c rR w

             
(2.27) 

which is the same form as Saffman and Turner [21]’s. 
 
2.3.1.2 Collision frequency kernel - Turbulent flow 

The present study is focused on the collision (or coalescence) and breakup of two unequal spherical drops. 
Concerning the hydrodynamics between two drops, the assumption of two equal drops will make it easy to analyze 
flow motion. The collision of equally assumed two drops is described in Figure 2.2. Following Chesters [23], two 
unequal spherical drops can be characterized by two equal drops of equivalent radius, Req, which is given by 
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R R
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                               
(2.28) 

where Ri and Rj are radii of two unequal drops. When a drop of Req is smaller than Kolmogorov’s length scale, the 
drop is considered as it is in the viscous subrange of turbulence and a drop larger than Kolmogorov’s length scale is 
considered as it is in the inertial subrange. The Kolmogrov’s length scale η is given by 
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(2.29)                                 

where  is the kinematic viscosity of the fluid. 
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                   Fig.2.2 Schematic of droplet collision; left is for two unequal droplets collision,  

                  right is for two equally assumed droplets collision (Ri=Rj=Req) 
 
 
2.3.1.3 Relative velocity between two drops 

Before discussing the collision frequency function, it is convenient to consider the relative velocity between two 
colliding drops. In analogy with Williams and Crane [24], the relative velocity between two particles can be thought 
as it is induced by two major effects: the effect of velocity gradient of the carrier fluid between two particles and the 
effect of different inertial response of particles of different radius to the movement of carrier fluid. According to these 
considerations, the relative velocity between two particles can be constituted by the effects of velocity gradient and 
different inertial response. It is supposed that two droplets within the fluid have velocities ,1pU  and ,2pU  before they 

collide. The carrier fluid surrounding these drops have velocities 1U  and 2U . When the slip velocities between the 
particle and the carrier fluid are denoted by  ,1 11 pQ U U  and ,2 22 pQ U U , the relative velocity vector 

,2 ,1p pW U U  can be expressed: 



2 12 1   

I SW W W

Q Q U U                   
(2.30) 

The first term on RHS IW
 
represents the amount of velocity difference induced by inertial effects of large density 

particles and the second term SW
 
represents the velocity difference induced by the velocity gradient (or strain rate) of 

the carrier fluid. The modeling of each term in the laminar flow will be accomplished in the future.  
Considering the collision of two particles of radius ri and rj, the responsible component of relative velocity to the 

collision is only the component in the direction of the centerline which connects the center of two particles. Figure 2.3 
illustrates which components of the relative velocity are related to the collision. Supposing the fixed central particle of 
radius rj, the moving particle ri has velocity IW  and SW  of which ,I rW  and ,S rW  makes two particles to approach 
each other whereas ,I tW  and ,S tW cause movement away from the fixed central particle. Therefore, only the velocity 
components that induce approaching motion must be considered and the velocity components causing movement 
away must be neglected from the consideration. 
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                     Fig.2.3 Schematic of components of relative velocity between  

                    two particles of radii ri and rj 
 

Considering the turbulent flow, the mean square of the relative velocity is given by [21] 
I I S Sw w w w w w

                
(2.31) 

It is assumed that Sw  is statistically independent of the slip velocities 1q  and 2q . Using the notation 

, , ,, ,S S x S y S zw w w w , the second term on the RHS is given by  
2 2 2

, , ,S S S x S y S zw w w w w
             

(2.32) 

Using the mean square of the velocity gradient in viscous subrange which is given by 
2 1  (Taylor [25])
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For isotropic turbulence, it has been shown that [26] 
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It follows that 
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This form is same as the velocity gradient term in the analysis of Saffman and Turner [21] considering the inertial 
effect together with the effect of velocity gradient term.  

To evaluate the first inertial effect term I Iw w , it is assumed that the velocities of the carrier fluid near two 

adjacent particles are the same. This assumption is valid when the two particles are smaller than the smallest eddy, in 
other words, it is valid when they are in viscous subrange. This assumption is equivalent to the assumption of Saffman 
and Turner [21] which is used in evaluating the same term as the first inertial effect term of this paper. This 
assumption results in the assumption that the correlation coefficient between 1q  and 2q  is unity where 1q  and 2q  are 
the fluctuating parts of the relative velocity between particle and its surrounding fluid of particle 1 and 2 respectively. 
The evaluation of this term will be discussed in the future work. Using the assumption, the first inertial effect term can 
be given by 

,2 ,1 ,2 ,1I I p p p pw w u u u u
                     

(2.37) 

Therefore, the i-direction mean square relative velocity between two particles, 2
,I iw can be expressed: 

2 2 2
, ,1, ,2, ,1, ,2,2I i p i p i p i p iw u u u u

                     
(2.38) 

This equation is the starting point of Williams and Crane [24]’s analysis of the fluctuating relative motion of two 
particles induced by slip motion between the particle and fluid. Saffman and Turner [21] also have derived the mean 
square of the relative velocity w w  considering the effects of velocity gradient and the inertial effect in viscous 
subrange. However, in fundamental assumption of their approach, the relaxation time is smaller than the time scale of 
smallest eddy. So, the term for the inertial effect cannot be used in our case. Instead, Williams and Crane [24] have 
derived the term of inertial effect for the small drops which is not limited by the small relaxation time. In Williams 
and Crane [24]’s analysis, the particle motion is described by the simplified Tchen [27]’s force balance equation 
ignoring the added mass, Basset history, and gravitational acceleration terms:  
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(2.39) 

where ui and up,i are the fluctuating parts of the fluid and particle velocities in i-direction, ρg and ρp are the densities of 
the fluid and particle, and τ  is the relaxation time of the particle of radius r.  Stoke’s drag law is applied here 
assuming the size of the particle is small enough. For ρp >> ρg, the first term on RHS can be neglected. In analogy with 
Levins and Glastonbury [28], using a more accurate form of the wave-number spectrum which includes the influence 
of turbulence within the viscous subrange, the mean square of the particle velocity is obtained by Williams and Crane 
as follows: 
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The mean square fluctuating velocity 2u  is given in terms of turbulent kinetic energy k assuming isotropic 
turbulence. The θ is the non-dimensional relaxation time of drop of radius r, τ is the particle relaxation time, and Lf is 
the longitudinal integral length scale which is approximated by 0.5L where L is the integral length scale of the largest 
energy-containing eddy approximated by k1/2/(B*ω) in k  model. Finally, λ is the Taylor’s microscale length. 
  

Starting from Panchev [29]’s integrated form of Tchen’s equation of motion, Williams and Crane derived the 
covariance ,1, ,2,p i p iu u using the more accurate wavenumber spectrum for the small particles which satisfies the 
condition θ << 1 (which imposes that the particle is in viscous subrange). Thus, using the mean square particle 
velocity and the covariance terms, the i-direction mean square relative velocity between two particles 2

,I iw
 
for 

viscous subrange can be expressed: 
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For large particles which satisfy the condition θ >> 1 (which imposes the particle is in energy containing region), it 
was shown that:  
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(2.42) 

They have successfully showed that the mean square relative velocity for viscous subrange goes to Saffman and 
Turner [21]’s inertial term at lower-limit of small relaxation time and the mean square relative velocity for energy 
containing region goes to Abrahamson [30]’s term at higher-limit of large particle size. They also derived the 
universal solution of the mean square relative velocity which can be used in inertial subrange, it is given by: 
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The universal solution of Williams and Crane approaches Abrahmson [30]’s mean square relative velocity for energy-
containing range at higher-limit. It should be noted here that their universal solution does not approach Saffman and 
Turner’s inertial term as it is explained in Kuris and Kusters [31]. However, the divergence for very small particle is 
appreciable as it is shown by Williams and Crane [24]. 

Finally, the mean square relative velocity induced by different inertial response, I Iw w , can be calculated 

assuming the mean square relative velocities are same in an arbitrary direction which implies 2 2 2
, , ,I x I y I zw w w . 

Saffman and Turner [21] have shown that only the small error is introduced in the collision frequency due to this 
anomaly. In isotropic turbulence, the mean square relative velocity for the viscous subrange is given by: 
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The mean square relative velocity for the inertial subrange is given by: 
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Accordingly, the mean square relative velocity w w  can be obtained using the equations given above for I Iw w  

and s sw w . For inertial subrange, the term s sw w  is neglected as explained in the next section. 

 
2.3.1.4 Collision frequency function 

The collisions are likely to be dependent on the relative motion between two particles. The mechanisms considered 
for the collisions are the shear mechanism and the accelerating (inertia) mechanism. The shear mechanism is due to 
the relative motion induced by the viscous force inside the turbulent eddy. The accelerating mechanism is due to the 
relative motion induced by inertial effects between the drop and suspending fluid. The most widely used collision 
frequency model considering the shear mechanism only is the Saffman and Turner [21]’s model in viscous subrange 
which is as follows: 
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(2.46) 

Saffman and Turner [21] have also derived the collision frequency including the accelerating mechanism. However, as 
explained in the previous section, it is assumed that the time scale of each drop is smaller than the Kolmogorov’s time 
scale (time scale of the smallest eddy) fundamentally and this is not matched with the aluminum drops in the 
combustion chamber due to ρp >> ρg. Instead, the collision kernel is modified to include Williams and Crane [24]’s 
result for small drops which is given in the previous chapter. 

For isotropic turbulence, the collision kernel βt which is obtained in the previous chapter for the spherical 
formulation is given by 

22t c rR w
                         

(2.47) 
Using the inertial and velocity gradient terms given in the previous chapter, the mean square relative velocity for 
viscous subrange is given as follows:  
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The mean value of radial relative velocity rw  is independent of the orientation of radial direction in isotropic 

turbulence. In analogy with Saffman and Turner [21], it is assumed that wr is aligned with the x-axis so that 

r xw w . Assuming the mean square relative velocities are same in an arbitrary direction which implies 
2 2 2
x y zw w w . Again, this anomaly leads to only small error as discussed in the previous chapter. Thus, the 

mean square relative velocity in radial direction is given by 
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In analogy with Williams and Crane [24], it is assumed that the relative velocity in radial direction spreads by a 
Gaussian distribution. Thus, the mean of absolute relative velocity is the first order moments of rw  which is given 
by 
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Accordingly, the collision frequency function for the viscous subrange is given by 
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The same discrepancy as Saffman and Turner [21]’s two models is observed. When the drops are identical (inertial 
effects of two adjacent drops confined in the smallest eddy are same), the constant becomes 1.671 whereas the 
constant in the model concerned the shear mechanism only is 1.294. This discrepancy is caused by the different 
approximation in defining isotropy as explained by Saffman and Turner and the error is considered as small [21].  

For inertial subrange, Kuris and Kusters [31] have shown that the accelerative mechanism becomes more 
dominant with increasing particle sizes comparing Saffman and Turner’s shear term and the universal solution of 
inertial term derived in their analysis which is very similar to Williams and Crane’s solution. The mean square of the 
velocity gradient in inertial subrange is given by [32] 
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(2.52) 

Comparing the shear term in viscous and inertial subrange, Saffman and Turner [21]’s term is second order in particle 
size whereas Rotta [32]’s term is 2/3( )cO R . Therefore, the effect of velocity gradient in inertial subrange is neglected 
and the mean square relative velocity in radial direction and the collision frequency function for the inertial subrange 
are given as follows: 
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2.3.1.5 Collision frequency kernel - Laminar flow 

The first consideration of particle collision rate in a laminar flow goes back to 1917 by Smoluchowski [13]. He 
considered a uniform laminar shear flow, which is a special case in which only one directional velocity component of 
the fluid exists and it varies linearly. He assumed that the particles follow the exact flow streamlines so that the shear 



rate, G, of the flow motion is responsible for the relative motion between two particles. He also assumed that the 
streamlines are straight so that the effect of the particle on the flow motion is neglected in his analysis. Considering 
two particles in a laminar flow which are a fixed central particle of radius rj and flowing particle of radius ri, the 
collision occurs when a center of flowing particle approaches within a distance (ri + rj). A distance (ri + rj) is 
conventionally defined as a radius of collision sphere. This collision is illustrated in Fig. 2.4a. The collision frequency 
can then be calculated by the flux of the fluid inwardly normal to the effective cross-section collision area (=

) multiplied by the number density of moving particles. The corresponding cylindrical formulation of collision 
frequency is described Fig. 2.4b. The radius of cylinder is the collision radius, (ri + rj) and the axis of cylinder passes 
through the center of the fixed particle. The total flux towards the effective collision area (which is same as the 
collision frequency function) is given by 

34 ( )
3ij i jG r r  

                     
(2.54)

 
The Smoulchowski’s analysis is oversimplified and it is desirable to take into account more complex motion of 

flow and accurate amount of flux across the surface of a sphere in spherical formulation of collision frequency 
function. More recently, this is first considered by Kramer and Clark [33]. They obtained the orthokinetic coagulation 
frequency (or collision frequency) for the laminar incompressible flow considering the strain rates acting within the 
fluid. Although their approach can be considered as more comprehensive than Smoulchowski’s analysis, it is still 
limited because the strain rates which cause departure of a moving particle from a fixed central particle are simply 
eliminated from the collision process. More precisely, the positive strain rate can contribute to the amount of flux 
flowing towards the surface of the collision sphere because the negative and positive strain rate can be applied at the 
same time. Thus, the positive strain rate will result in decrease of the total flux and it should not be ignored. In 
addition, more practically, the compressible effect can deform the fluid element and it can contribute to the particle 
collision because the contraction of element occurs ( / 0i iU x   ) and then more contribution to the collision will 
take place than incompressible case ( / 0i iU x   ). This effect can be significant in case of the flow in a rocket 
chamber or nozzle. Therefore, their approach will be modified here to incorporate the neglected effects mentioned 
above.   
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       Fig. 2.4 Schematic of Smoulchowski’s droplet collision; (a) illustrates two unequal  
                   droplets in uniform laminar flow, (b) shows the cylindrical formulation of  
                   collision process 



Considering the motion of fluid elements of viscous fluid, it can be thought that the fluid element responds linearly to 
deformation rate (or velocity gradient, deformation rate tensor is /ij i je U x   ) when the fluid element is small. In 
addition, the values of deformation rate acting on the fluid element can be considered as constants as long as the fluid 
element is sufficiently small. When two adjacent particles are assumed to exist in the fluid element, the motion of the 
particles is determined by the deformation of fluid element. When the fluid element deforms due to the velocity 
gradient, the fluid elements experience the linear deformation which can cause the volume change of element in a 
compressible fluid, the rotation, and angular deformation which change the shape of the fluid element. The types of 
fluid element deformation are illustrated in Fig 2.5. 

The deformation rate tensor, eij, can be represented by a linear combination of two 2nd rank tensors as follows: 
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The first term in RHS is antisymmetric part of the deformation rate tensor which is called as the rate of rotation tensor, 
Ωij, and the second term is symmetric part called as the rate of strain tensor, sij, which are given by: 
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The rate of rotation tensor is responsible to the rotation of the fluid element. Considering the two particles in the 
fluid element, the rotation does not induce the collision as described in Fig. 2.6a. The rate of rotation tensor causes no 
change of shape or volume of fluid element and correspondingly it does not cause the particle motion in the direction 
of reduction of the distance. The Fig.2.6b shows the collision occurred by the normal components of the rate of strain 
tensor and Fig. 2.6c shows the collision occurred by the shearing components of the tensor. Therefore, the rate of 
strain tensor can be thought as the only source which is responsible for the collision. 
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                                                  Fig. 2.5 Schematic of the fluid element deformation 
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   Fig. 2.6 Schematic of influence on the collision due to; (a) rotation, (b) linear  
                deformation, and (c) angular deformation 
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Fig. 2.7 Schematic of relative velocity components induced 
             by normal strain rate 

 
  



Following Kramer and Clark [33] and Clark [34], the rate of strain tensor can be diagonalized without loss of 
information by the rotation of the coordinate system to principal coordinate because the rate of strain tensor is 
symmetrical. In case of two-dimensional symmetric rate of strain tensor (s12=s21) can be diagonalized as follows: 
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Now, the collision is induced only by the normal components of transformed rate of strain tensor and the next step 
will be to calculate the total flux across the surface of the collision sphere. The Fig. 2.7 illustrates the components of 
relative velocities induced by normal strain rates in two dimensions with a negative component in principal 'x  
direction and a positive component in principal 'y  direction. The velocity components induced by normal strains are 
given by  
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(2.58) 

Therefore, the velocity induced by normal strains in radial direction is given by 
' 2 ' 2
11 22sin cosr c cW s R s R                                        (2.59) 

Based on the equations given above, the hydrodynamic collision frequency function in laminar flow that is same as the 
inwardly normal flux across the collision sphere can be calculated as follows: 
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(2.60) 

 
The aerodynamic collision frequency function in laminar flow field can be obtained from the fast Eulerian 

approach. From the fast Eulerian method, the relative velocity between two particles due to slip motion assuming the 
same /DU Dt  at two close points is given by 
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Based on the conservation of flux across the particle surface (  0rW n dA  ), the inwardly normal flux is given by 
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The coordinate transformation gives the following aerodynamic collision frequency in laminar flows: 
2

, , rl a l a cJ W R                      (2.63) 
 
  



2.3.2 Breakup frequency kernel 
2.3.2.1 Turbulent flow – Hydrodynamic breakup 

The viscous shear forces in a turbulent suspension acts on the droplet surface and results in the velocity gradient. 
This velocity gradient leads to deform the droplet surface and the breakup of the drop may occur [35, 36]. Considering 
the hydrodynamic stresses as a source of the breakup, Delichatsios and Probstein [37] have derived the breakup 
frequency in the inertial subrange. They have used the approximation of the probability density distribution of that the 
velocity difference, Δu(Di), across the drop of diameter Di to Gaussian distribution with the variance 2( )u  and cut-
off velocity Δuc. The breakup of a droplet occurs when the velocity difference exceeds its critical value Δucrit. The 
breakup frequency function (breakup frequency kernel) b(Ri) of the droplet of radius Ri and the distribution function 
are given by 
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respectively. In their model, the variance 2

v
  and the cut-off velocity is given by 
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respectively. Regardless of the direction of velocity difference acting on a droplet, all of the velocity differences can 
be responsible for the breakup. Thus, the estimation of the velocity difference Δu is done in the way of finding the first 
order moment of u  instead of using the root-mean-square of the velocity difference. However, the first order 
moment of the above probability distribution on u  does not converge. Instead, we assume that the velocity 
difference spreads by the exact Gaussian distribution (no term of the cut-off velocity, in analogy with Williams and 
Crane [24]). Thus, the velocity difference assuming it is the first order moments of u  is given by 
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where P(Δu) is the Gaussian distribution. Therefore, applying the above equation into the given distribution function, 
the breakup frequency for inertial subrange is expressed by 
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It should be note that the probability distribution P(Δu) is negative when εcrit/ε is smaller than 53.154 due to the 
existence of the term of the cut-off velocity. Thus, the breakup frequency is set to zero in this limit. 

Kusters [38] have derived the breakup frequency by assuming that the velocity difference Δu(Di) across the drop 
of diameter Di follows the exact Gaussian distribution for the viscous and inertial subrange (in analogy with Saffman 
and Turner [21] and Williams and Crane [24]). His work has started from the same formula of the breakup frequency 
given by Delichatsios and Probstein [37] except the assumption of the probability distribution. We used his approach 
in modeling of the breakup frequency in viscous subrange. The breakup frequency and Gaussian distribution are given 
by  
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The variance 2

v
  and the mean velocity difference assuming it is the first order moments of u  are given by 
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Therefore, the breakup frequency for viscous subrange is given by 
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The hydrodynamic stress on a droplet surface due to the viscous force can be characterized by Capillary number, 
Ca, which is the ratio of the stress due to the continuous phase velocity gradient to the stress on the droplet surface. 
The Capillary number is usually used in the analysis of the viscous force acting on the drop without the inertial force. 
The classical definition of the capillary number on a droplet radius Ri is given by 
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(2.71) 

where µ is the suspension flow viscosity, G is the velocity gradient, and σ is the surface tension. The breakup can be 
thought as it is occurred when the Capillary number exceeds the critical Capillary number Cacrit

 [39]. The critical 
Capillary number depends on the flow type and the viscosity ratio between a drop and suspension flow µp/ µ [40]. The 
velocity gradients induced only by the viscous force in viscous and inertial subrange is given by 
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respectively. Therefore, the critical energy dissipation rate corresponding to the critical Capillary number in viscous 
and inertial subrange is given by 
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 respectively. Due to the lack of experimental data, the critical Capillary number is obtained from the results of 

immiscible fluids experiment in a simple shear flow. Cristini et al. [41]’s numerical result gives that the critical 
Capillary number is approximately 0.46 at the 1.3 viscosity ratio which approximates the condition inside the 
combustion chamber. 
 
2.3.2.2 Turbulent flow - Aerodynamic breakup 

The breakup mechanism of liquid drops in a gas suspension is usually characterized by the aerodynamic forces (or 
inertial forces) based on the relative velocity between the gas and droplet. The non-dimensional parameters used in the 
breakup due to aerodynamic forces are the Weber number and Ohnesorge number given as follows: 
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The Weber number is the ratio of the fluid inertia to the surface tension and Ohnesorge number is the relative 
importance of the viscous forces to inertial and surface tension forces. Here, ,p iU U  is the velocity difference 
between the droplet i and surrounding. The degree of deformation and breakup is determined by these parameters. 
According to Hsiang and Faeth [42], there is no breakup observed when the Ohnesorge number is larger than 4. 
Because this is not our case (the Ohnesorge number of Al/Al2O3 particles in a chamber is typically smaller than 4 
under high temperature condition), the Weber number becomes the only parameter relating with breakup. The breakup 
occurs when the droplet Weber number is larger than the critical Weber number. Thus, the slip velocity, 
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The aerodynamic breakup frequency for both of viscous and inertial subrange is assumed to be given by the 
following using the aerodynamic particle break time and the breakup efficiency corresponding to the critical velocity 
difference: 
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where the constant C is obtained from the empirical correlation for the breakup time given by Hsiang and Faeth [42]. 
The constant C is given by 
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Following Levins and Glastonbury [28], the slip velocity su  can be related to turbulence parameter. They have 
started from Tchen [27]’s force balance equation between a drop and surroundings and the applicable drops are not 
limited by their relative time scale to the time scale of the smallest eddies. In contrast to Williams and Crane [24] who 
used a stokesian particle assumption, Levins and Glastonbury [28] used actual drag coefficients corresponding to drop 

size classes can be used here. Following their approach, the mean square slip velocity    2
p pq U U U U    for a 

random turbulent fluctuation case is given as follows assuming the exponential form of the Lagrangian correlation 
function [28]: 
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Here, L is the integral length scale of the largest energy-containing eddy defined in above chapter. The root mean 
square fluctuating velocity 

1/22u  is given by 1/2(2 / 3)k  in isotropic turbulence. Therefore, the mean square slip 
velocity q2 can be obtained by solving the above equation numerically. Assuming the Gaussian distribution of relative 
velocity, the slip velocity 

s
u  can be given as  

1/22 / q  by calculating the first order moment of pU U . 
Newton’s method or bisection method is used here. The drag coefficient is given by [43]   
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where Re /
p s i

u D   . The appropriate critical Weber number for Al2O3 is found in Caveny and Gany [43] which 

is given as 28. The larger breakup frequency is chosen comparing the breakup frequencies induced by viscous and 
inertial force (comparing hydrodynamic and aerodynamic breakup) for both of viscous and inertial turbulence 
subranges.   
 
2.3.2.3 Laminar flow - Hydrodynamic breakup 

Following the same approach given in hydrodynamic collision frequency model in laminar flow, the average 
velocity difference across a droplet of radius Ri using the Euclidean norm of rate of stress tensor is given by.  

2 2 2
11 12 228 2iU R s s s               (2.80) 

Once the velocity difference U  across the droplet is obtained, this can be used in the hydrodynamic breakup 
model. The hydrodynamic breakup model in laminar flow is given by 
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(2.81) 

The critical velocity difference across the droplet critU

 

can be obtained in terms of the critical Capillary number 
Cacrit as follows: 

crit
crit

CaU 


 

                    
(2.82) 

 
2.3.2.4 Laminar flow - Aerodynamic breakup 

Using a fast (or equilibrium) Eulerian approach, the velocity of particle phase can be obtained then the mass and 
momentum conservation are no longer needed to be calculated. Fundamentally, this will allow us to consider slip 
between phases in the model and the resultant aerodynamic forces on droplets that may or may not lead to breakup. In 
the fast Eulerian approach, the particle phase velocity is handled as a field variable with a limitation of small size and 
large density of particles and the relative velocity between the particle and the surrounding fluid is given by 

p
DUQ U U
Dt

   
                

(2.83) 



where pU  and U  are the particle phase and gaseous phase velocity vectors, respectively. The term   is the relaxation 
time of the particle and /D Dt  is the material derivative in Eulerian view point. In analogy with Saffman and Turner 
[21], assuming that the carrier fluid velocities near two adjacent particles are same, the velocity difference of the 
carrier fluid between two close point is neglected (this velocity difference is already considered in the previous chapter) 
and then the relative slip velocity between two particles is given by 

 1 22 1
DUQ Q
Dt

   
                             

(2.84) 

Once the slip velocity (
s

U Q  ) is obtained, the modeling of aerodynamic breakup in laminar flow can be 
considered using the aerodynamic breakup frequency function: 
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where the constant C and critical slip velocity are given by [42] 
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in terms of critical Weber number, Wecrit. 
 
 
2.3.3 Coalescence efficiency 

As Salita [44] explained, the assumption that all collisions result in coalescence has usually been used in the 
multiphase simulation of rocket combustion chamber. However, many prior studies (i.e., Ashgriz and Poo [45]) have 
shown experimentally that all collisions of two water drops does not result in coalescence. Four different types of 
collision outcomes were observed in the experiments as it is explained previously: bouncing, permanent coalescence, 
temporary coalescence followed by separation and temporary coalescence followed by a set of satellite drops. In 
bouncing mode, the drops are reflected in the reverse direction of their approaching velocity due to the effect of the 
fluid film between the drops. The permanent coalescence refers to the creation of stable drops after the drops are 
merged. The temporary coalescence with separation is when the merged drop is unstable and the merged drop is 
separated into two or more drops. The temporary coalescence with satellite drops is similar to separation mode but it is 
disintegrated into a set of very small satellite drops. Although the last three modes concern the phenomenon after the 
drops are contacted each other, the first bouncing mode concerns the drops before they are contacted.  

Due to the absence of the coalescence model of metal droplets (Al or Al2O3 in the rocket propulsion), Salita [44] 
was motivated to perform a series of coalescence experiments using mercury drops, whose the density is 13.5 times 
and surface tension 6.5 times bigger than water drops at room temperature. By using the mercury drops, they can 
provide surface tension values near that of Al2O3. To compare the coalescence model with the experimental results, 
they have used the water drops coalescence model of Brazier-Smith et al. [46]. The model of Brazier-Smith et al. [46] 
postulates that the collision of drops always result in the unstable coalescence and then the merged drop will be 
separated into the same size of incident drops if the rotational energy of the merged drop exceeds the surface energy 
holding it together [44]. They concluded that the coalescence model of water drops accurately predicted that of 
mercury drops. The coalescence model of water drops is used here.  

The processes of permanent coalescence and disintegration are described in Figure 2.8. Considering two particles 
of radii ri and rj, the moving particle is the particle of radius ri supposing the particle of radius rj as a fixed particle. A 
temporally formed agglomerate sphere due to the collision has a mass mi+mj and the corresponding radius 

3 3 1/3( )o i jR r r . The resulting rotational energy of the temporal agglomerate from the induced angular momentum by 
the impact of moving particle to the fixed particle is given by 
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Here the separation is assumed to occur in the way that only two product droplets which have the same size as the 
original two droplets because Brazier-Smith et al. [46]’s experimental results for water droplets have shown a good 
agreement with the modeling using this separation model. The energy required to separate the temporal agglomerate 
into droplets of radii '

nr  is given by 
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(2.88) 

Thus, in case of separation into the two droplets which have the same size as the original two droplets is given by 
2 2 2

, 4S s i j oE r r R
                                                                   

(2.89) 
Therefore, the permanent coalescence occurs when ER < ES,s, and this condition gives that 
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Defining the coalescence efficiency as the ratio of collision cross section (πx2) to the maximum available collision 
cross section 2

c
R , the coalescence efficiency is given by: 
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(2.91) 

where ρp is the density of the droplet, and σ is the surface tension of droplet.  
 

 

 
Fig.2.8 Schematic of coalescence and separation processes of collision between two droplets of 

                  radii ri and rj 
 
 
2.3.4 Collision efficiency (Bouncing efficiency) 

Following Coulaloglou and Tavlarides [7] and Tsouris and Tavlarides [8], the drop collision efficiency can be 
characterized by two terms; contact time and collision time. The contact time is the time of two drops staying together 
after they collided. The collision time is the time required for the drainage of liquid or gas films between two drops. If 
two drops are staying together after they collided for enough time for the film drainage, the collision of two drops 
occurs. Therefore, the collision occurs when the contact time is larger than the coalescence time. The function of the 
coalescence efficiency derived by Ross [47] is given by Tsouris and Tavlarides [8] as follows: 
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(2.92) 

where t  is the average contact time, T  is the average coalescence time, and 
T

  is the standard deviation for the 

coalescence time. This equation can be simplified by assuming that 
T

  is zero as follows [8]: 
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(2.93) 

Considering the liquid droplets in gaseous fluid system, the deformation of the interface between two droplets is 
supposed to be significant unlikely to the solid particles in fluid. Thus, assuming the deformation of the interface is 
significant, the parallel-film approach can be used in this system. The Figure 2.9 illustrates the idealized deformation 
of the interface in the parallel-film approach. 
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Fig.2.9 Schematic of idealized collision process between two deformable 

                 droplets of equal radius Req 
 
 

Based on the classical lubrication theory, the film drainage process can be described by two equations given by 
[48] 
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(2.94) 

where ρ is the gas density, µ is the dynamic viscosity, Um is the gap-averaged radial velocity of draining flow, and P is 
the gap-averaged pressure. Considering incompressible gas flow (ρ is constant), two governing equations can be 
solved for the pressure in the gap between two spherical drops as follows: 
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(2.95)

 Neglecting Van der Waals attraction and electrostatic double-layer repulsive force, the balancing of inertial force by 
suspension flow and dynamic force exerted by the pressure inside the gap closes the system. The force balance 
equation is given by  
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(2.96) 

where F is the compressive inertial force. Following Chesters [23], the amount of deformation is related to the 
compressive inertial force as follows: 
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Thus, eliminating the radius of the interfacial circle rs from the force balance equation, the rate of film thickness 
change is expressed by 
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(2.98) 

Consequently, assuming the constant force F, the calculation of the time required for film drainage when the drops 
deform is given by 
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where the hf and h0 is the final gap distance and initial gap distance between particles respectively. This collision time 
is also used in Coulaloglou and Tavlaride [7]. 

Here, F is the force acting on either ends of two adjacent drops. By assuming the force is propotional to the mean 
square velocity difference at either ends of the drops, Coulaloglou and Tavlarides [7] have used the following 
expression for turbulent flow: 

2 2 (2 )
eq c

F R u R 
                  

(2.100) 

where 2 (2 )
c

u R  is the velocity difference across the distance 2Rc in the turbulent flow. They have assumed that the 

proportionality constant in this equation is unity following Rotta [32]. Similarly, the following equation for the force 
acting on either ends of two adjacent drops (at a distance of 2Rc) in laminar flow is used: 
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(2.101) 

where the average velocity difference is obtained from Eq. 2.79 at a distance of 2Rc. The velocity differences in 
viscous subrange and inertial subrange are given by 
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respectively. Therefore, F for viscous subrange and inertial subrange are given by 
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respectively. The final gap distance hf between particles which is set as 300 armstrong meters which is the minimum 
of reasonable film thickness appearing in Coulaloglou and Tavlarides [7] and the initial gap distance h0 is set as 0.1Req 
following Tsouris and Tavlarides [8]. The contact time for the viscous subrange and inertial subrange is set as 
Kolmogorov’s time scale and Taylor’s micro time scale, respectively. The contact time for the viscous subrange and 
inertial subrange is given by 
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 respectively. Following Chesters [23], the contact time for laminar flow is given as follows: 
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2.3.5 Implementation of the mean velocity effect in turbulent flow 

The mean velocity effect in turbulent flow on the collision process can be obtained by using decomposition of the 
relative velocity between two particles which is suggested by Saffman and Turner [21] as follows: 

2 22
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(2.106) 

Here, the square means the dot product. Using the Reynold’s decomposition, the mean square relative velocity 
between particles becomes 
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(2.107) 

 The lower cases q and u are fluctuating parts of the slip velocity and the surrounding fluid velocity. The first and 
third terms on the RHS are given by Eqs. 2.61 and 2.79 respectively (the average velocity difference across at a 
distance of Rc is obtained from Eq. 2.79). The sum of second and fourth terms is obtained from Eq. 2.49 for viscous 
subrange and Eq, 2.53a for inertial subrange (the fourth term is neglected in inertial subrange). This velocity 
difference is used to calculate the coalescence efficiency in turbulent including significant mean flow effects by 
putting the above equation into Eqs. 2.90. In case of collision efficiency, it is assumed that the force is propotional to 
the mean square velocity difference at either centers of the drops. In addition, the minimum value between the 
collision and coalescence efficiencies.  

Also, the calculation of mean square velocity difference across a droplet  
2U  and the mean square slip 

velocity  
2

s
U  is important. Relaxing the assumption of constant mean velocity and using Reynold’s 

decomposition, these terms can be given by 
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respectively.  



Additionally, the key parts of implementation of mean velocity effect in collision/breakup process are the 
calculation of collision and breakup frequency function. It is commonly assumed that the collision mechanisms due to 
Brownian motion, fluid shear, and differential sedimentation are independent from each other and the collision 
frequency functions are additive [49]. The collision induced by differential sedimentation is very similar to 
aerodynamic collision because the source of the collision is the velocity difference between two drops induced by 
different response of each drops to their surrounding fluid. It is further assumed here that the collisions induced by 
laminar and turbulent flow are independent. Thus, the sum of collision frequency functions of laminar hydrodynamic 
collision, laminar aerodynamic collision, and turbulent collision is used for the total collision frequency function. In 
case of breakup frequency, the maximum value between laminar hydrodynamic breakup, laminar aerodynamic 
breakup, and turbulent breakup is used for the calculation. The summary of equations used for collision and 
coalescence efficiencies, and collision and breakup frequency function is provided in Table 2.1. 
 

 
 
 
 

Table 2.1 Summary of equations used for collision/coalescence efficiencies and collision/breakup frequency functions 

 Laminar Turbulent Turbulent with 
mean flow effects 

Collision 
efficiency 

Eq. 2.93 
- Eqs. 2.99, 2.101, and Eq. 

2.105 are used 

Eq. 2.92 Eq. 2.93 
- the velocity 
difference is 

obtained from Eq. 
2.108 

- the contact time is 
assumed as the sum 

of laminar and 
turbulent 

Viscous Inertial 

Eqs. 2.98, 2.103a, 
and 2.104a are used 

Eqs. 2.99, 2.103b, 
and 2.104b are used 

Coalescence 
efficiency 

Eq. 2.91 
- the amount of relative velocity 
is obtained from the sum of Eq. 
2.80 at a distance of Rc and the 

absolute value of Eq. 2.61 

Eq. 2.91 
Eq. 2.91 

-the relative velocity 
is obtained from Eq. 

2.107 

Viscous Inertial 

Eq. 2.49 used Eq. 2.53a used 

Collision 
frequency 
function 

Hydrodynamic Aerodynamic Viscous Inertial Sum of Eq. 2.60, 
2.63, and 2.51 or 

2.53b Eq. 2.60 Eq. 2.63 Eq. 2.51 Eq. 2.53b 

Breakup 
frequency 
function 

Hydrodynamic Aerodynamic Hydrodynamic Aerodynamic 
Maximum between 

Eqs. 2.81, 2.85, 
2.70, 2.67, and 2.76 Eq. 2.81 Eq. 2.85 

Viscous Inertial 

Eq. 2.76 Eq. 2.70 
-Eq. 2.73a 

used 

Eq. 2.67 
-Eq. 2.73b 

used 
 

 
 

 

 

 

 

  



III. Results 
 
3.1 Problem Statement 
3.1.1 Baseline geometry 

A series of simulation was performed to validate the code comparing the results to Crowe et al.[50]’s experimental 
results and Hermsen’s correlation. Crowe et al.’s nozzle has a length of 5.2 cm and a inlet radius of 1.587 cm. The 
throat is located at 2.113 cm downstream from the inlet and its diameter is 1.27 cm. The corresponding area ratio of 
the throat to the inlet is 6.246 and the ratio of the throat to the exit is also 6.246. The figure 3.1 illustrates their nozzle 
geometries. They also performed the experiments measuring the particle diameter at the chamber without the nozzle 
attached by pressurizing the collection chamber to a certain level. The particles collected from the motors containing 
16% Aluminum particles had the mass mean diameter of 0.74 µm and the standard deviation of 0.456 on pressure over 
150psi with only slight variation of values. Because we can obtain the parameters of their experiments required to 
perform simulations from Crowe and Willoughby[52], we decide to perform simulations under their experimental 
conditions.      

A series of simulations was also performed to compare the results to the correlation under the nozzle configuration 
used by Shegal[53] for 150psi chamber pressure. His experiments performed with Polyurethane-type solid propellants 
containing 12% aluminum. The motor dimension is 5 inch outer diameter by 6 inch long with a circular port of 2 inch 
diameter. The conical convergent nozzle is attached to the motor and the chamber pressure was changed by adjusting 
the throat diameter. He obtained the particle size information at the nozzle exit (or nozzle throat) by firing motor into a 
tank. He reported the size data from the particles attached to tank wall.  

The particle size information in the motor of Shegal can be obtained from Fein[54]. While holding the chamber 
pressure 150 and 500 psi by pressurizing the tank to the desired level, the motors without the nozzle are fired into the 
tank. The measured MMD of particles were 0.79 and 2.39 µm for 150 and 500 psi chamber pressures, respectively. At 
these chamber pressures, the measured MMDs at the nozzle exit were 1.5 and 3.5 µm, respectively.  

In order to reduce the error due to the fast Eulerian assumption, we choose the nozzle geometry for Shegal’s 150 
psi case. The large particle diameter gives the large relaxation time ( 22 / 9p gτ r  ), then it can lead the large 

amount of error in the particle phase velocity, pU . According to Ferry and Balachandar[18], the particle phase 
velocity can be obtained from the fast Eulerian approach within the reasonable error bound when the relaxation time is 
less than the fluid time scale which is defined by the inverse of the maximum of absolute compressive strain). Thus, 
the difficulty specific to the fast Eulerian approach arises, which is that this approach can produce negative values of 
particle phase velocity. To overcome this difficulty, clipping has been used. The fast Eulerian approach can be 
replaced by solving momentum equations for the particle phase to obtain more accurate particle phase velocity. 
However, it is out of our concerns for the computational efficiency.  

Because Shegal did not provide the detailed geometrical information, we performed the isentropic analysis and 
obtained the nozzle throat diameter. To account for the particle size variation in the diverging section and compare the 
particle size data at the nozzle exit, the conical diverging section with a 18 deg half angle. In addition, the nozzle exit 
diameter is chosen according to the perfect expansion assumption at the sea level and it gave the shock wave free 
condition inside the diverging section.    

Figure 3.2 highlights a typical axisymmetric unstructured mesh used in the computations. The nozzle has a length 
of 15.4 cm and a inlet radius of 6.35 cm. The throat is located at 12.6 cm downstream from the inlet. The 
corresponding area ratio of the throat to the inlet is 30.57 and the ratio of the throat to the exit is 2.43. The inlet 
geometry is horizontally smoothed out to remove additional disturbances caused by sharp geometry. A simulation is 
performed in a typical axisymmetric unstructured mesh form. The physical time consumed during a test case 
simulation is about four days using 4 cpus a time stepping by maximum CFL number in the message passing 
environments. 
  



 
 

 
Figure. 3.1 Schematic of the test nozzle geometry for Crowe et al.’s experiments (245x80 cell mesh) 

 
 
 

 
Figure. 3.2 Schematic of the test nozzle geometry for Shegal’s experiment (265x80 cell mesh) 

 
 

 
All our current simulations are running on our current HPC (High-performance computing) cluster. The hardware 

configuration of the HPC cluster is presented in Table 3.1. The software used for the calculation is presented in Table 
3.2.  

A non-slip boundary condition is imposed at the nozzle wall and a pressure inlet and supersonic outlet condition is 
set as boundary conditions. The inlet kinetic energy k and specific dissipation rate ω are set as sufficiently small 
values. The gas mixture properties are summarized in Table 3.3. These properties are obtained from the properties for 
solid propellant rocket simulations of Lupoglazoff and Vuillot [56] and Najjar et al [2]. The inlet temperature is 
obtained from Fein[54]. Sutherland’s law is used for the viscosity rather than the constant viscosity assumption with 
the reference temperature Tref and Sutherland’s constant Sref given in Table 3.3 and it is given by 
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Table 3.1 Hardware configuration of current HPC cluster 

Hardware Description Total 
Quantity 

CPU 
Head node 2.0 GHz AMD Opteron Quad Processor 1 

Computing nodes 2.4 GHz AMD Opteron Quad Processor 56 

Motherboard 
Head node HP ProLiant DL385 1 

Computing nodes HP ProLiant DL145 56 

Memory 
Head node 8 GB 

284 GB 
Computing nodes 13 nodes – 8GB, 43 nodes – 4 GB 

Storage 
Head node 1.2 TB 

5.7 TB 
Computing nodes 80 GB 

Switch 
HP ProCurve 5406zl (10 GB Interconnection support) 1 

HP ProCurve 5400zl (10 GB Interconnection support) 1 
 

 
 

Table 3.2 Software used for calculation 
Software Description 

Operating system RedHat Linux 7.2 

Fortran Compiler PGI Compiler 7.1-2 by Potland Group 
Cluster Development kit 

MPI MPICH2 1.0.5 
 
 
 
 

Table. 3.3 Gas mixture properties and pressure boundary conditions 
Quantity Value 

MW (kg/kmol) 27.76 
Cp (J/kg · K) 2439.04 
µref (kg/m · s) 36.0e-05 
Tinlet = Tref (K) 3279 

Sref (K) 120 
Pin (N/m2) according to simulation cases 
Pout (N/m2) 101325 

 
 
 

3.1.2 Particle phase properties and boundary conditions  
The density for the particle phase is obtained from Al2O3 density relationship given by Najjar et al. [2] as follows: 

35632 1.127      (kg/m )
p
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(3.2) 

where T is in deg. K.  Due to the limited available data, a surface tension and dynamic viscosity of liquid Al2O3 are 
obtained from Hatch [57] for molten Aluminum instead of Aluminum Oxide. The surface tension and dynamic 
viscosity of molten Aluminum are given by 
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where Tm is the melting temperature of Aluminum and it is given as 933.47 K.  



The mass mean diameter (or Herdan’s mean diameter) D43 can be obtained from the weights and abscissas which 
is calculated by  

4
4

14
343

3
3

1

N

i i
i i i

N

i i
i i

i

w ln Dm
D

m n D w l





  


                  
(3.4) 

The purpose of the current study is to simulate and investigate the coalescence/breakup processes in the typical 
converging/diverging nozzle. The coalescence/breakup processes are sensitive to the distribution of particles. The log-
normal particle number distribution or exponential distribution can be used following Najjar et al. [2] and Fein [54], 
respectively. Najjar et al. have referred other researcher’s finding of lognormal and bimodal size distribution of 
droplets entering the chamber from the solid propellant surface. Gany et al. [1]’s experimental results of the 
distribution of the droplets leaving the propellant surface is close to a lognormal distribution. The model proposed by 
Fein [54] is the exponential distribution rather than lognormal distribution. Fein compared his modeling with the 
experimental data performed by Shegal and the good agreement between the model and experiment is obtained.   

 Thus, the lognormal distribution is given by 
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where dn is the number fraction of drops in a given range dD, 
s

  is the standard deviation, and Dm is the mean drop 

diameter. The transformed coordinate by l3=v (where v is the volume of a drop) can be expressed as l=D according to 
DQMOM approach and the distribution of l is also lognormal distribution. Therefore, the moments are given by       

0
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(3.6) 

The analytical expressions for the raw moments of lognormal distribution are given by 
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(3.7) 

The exponential distribution modeled by Fein [54] is particle volume distribution which is given by 
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where Vn is the number average particle volume. Therefore, the volume distribution needs to be converted to size 
distribution. Assuming the spherical droplet, the size distribution is obtained as follows: 
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where λ is the rate parameter and αv is the shape factor for the sphere which is given by π/6. The analytical expressions 
for the raw moments of exponential distribution are given by 
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(3.10) 

The raw moments of inlet particle distribution are used to find weights ( iw ) and abscissas ( il ) from the PD algorithm. 
 To use these two distributions as an inlet condition, two and one variables should be known for lognormal and 
exponential distributions, respectively. As described above, we chose Shegal’s nozzle configuration used for 150psi 
chamber pressure. Thus, we used his experimental results for particles in the chamber as a nozzle inlet condition. 
According to Fein[54], while holding the chamber pressure 150 psi by pressurizing the tank, the motor without the 
nozzle gives that the rate parameter λ  is 4858099.849 1/m and D43 is 0.79 µm. However, due to the slight disturbance 
occurring in PD algorithm, the calculated value of D43 using this rate parameter is 0.78 µm. To remove this 
undesirable effect from PD algorithm, the rate parameter is slightly adjusted and is set as 4804660.751 1/m. This 
adjustment will not deviate the results significantly. Finally, the particle concentration ξc is given by 0.24 assuming 
that all of Aluminum in the propellant is converted to Aluminum Oxide.    
  
 
 
   

 
 

 



3.1.3 Experimental results by other researchers 
Although the current model has an ability to predict the drop size distribution inside the rocket chamber and 

nozzle, it is hard to validate the code due to the lack of experimental data of drop size inside the chamber. The high 
temperature and high velocity conditions in the rocket chamber and nozzle make it difficult to measure the particle 
size. Until now, the experiments are performed to measure the particle size at the exit plane of nozzle (i.e. 
Sambamurthi [58]) and lots of empirical correlations are developed to predict the particle size at the exit as it is 
described by Hermsen [10]. Thus, we decide to validate the predicted particle size data at the nozzle exit with the 
empirical correlation. The empirical correlation which is widely used in the solid rocket industry is Hermsen’s model 
[10] for the Aluminum Oxide particle size:  

  0.2932

43
3.6304 1 exp 0.0008163

t c c c
D D P   

             
(3.11) 

where D43 is the mass mean diameter (µm), Dt is the nozzle throat diameter (in.), ξc is the particle concentration in the 
chamber (gmol/100 g), Pc is the chamber pressure (psi), and τc is the average particle residence time in chamber (ms). 
The average chamber residence time is given by 

/
c c c

V m 
       

(3.12) 
where ρc is the gas density in chamber (kg/m3), Vc is the volume in chamber (m3), and m  is the propellant mass flow 
rate (kg/s). Because the current DQMOM modeling uses the total number of particles, ntotal, instead of the particle 
concentration, ξc, the total number of particles can be obtained using PD algorithm. After the weights ( iw ) and 
abscissas ( il ) are obtained by PD algorithm for a certain ntotal, a ntotal corresponding to a given ξc is calculate by trial 
and error method on the following equation: 
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where 
2 3

Al O
M is the molar mass of Al2O3 (g/mole) which is given by 101.94 for the current study. According to 

Hermsen[10], the standard deviation of the correlation is 0.298 and it is corresponding to a deviation of D43 of about 
±35% due to the data scatter obtained from various collection and measurement techniques. 

To validate the modeling, we compared the predicted results to Crowe et al.’s experiments. In addition, the 
simulation is validated by comparing it with Hermsen’s correlation. Therfore, we constructed one test matrix for 
Crowe et al.’s experiments and three different test matrices by varying the chamber pressure, particle concentration, 
and, nozzle scale for Shegal’s cases. Tables 3.4-7 summarize the inlet conditions for gas and particle phases and 
nozzle scales.  

 
 

 
 

 
Table. 3.4 The particle phase inlet boundary conditions – for Crowe et al. [50]’s experiments 

Case no. C-1 C-2 C-3 
Dt 0.5 
ξc 0.277 
Pc 

(chosen to compensate pressure 
variation according to Hermsen [10]) 

470 650 980 

τc 15 
ntotal 7.61e15 10.57e15 15.93e15 
Dm 0.361 
σs 0.456 

 
 

  



 
 
 
 
 
 
 

Table. 3.5 The particle phase inlet boundary conditions – chamber pressure variation 
Case no. P-1 P-2 P-3 P-4 P-5 P-6 

Dt 0.904 
ξc 0.240 
Pc 150 250 350 450 550 650 
τc 4.15 

ntotal 5.08e15 8.43e15 11.83e15 15.22e15 18.6e15 22.0e15 
λ 4804660.751 

 
 
 
 

Table. 3.6 The particle phase inlet boundary conditions – particle concentration variation 
Case no. M-1 M-2 M-3 M-4 M-5 M-6 

Dt 0.904 
ξc 0.14 0.16 0.18 0.2 0.22 0.24 
Pc 550 
τc 4.15 

ntotal 10.85e15 12.4e15 13.95e15 15.5e15 17.04e15 18.6e15 
λ 4804660.751 

 
 
 

Table. 3.7 The particle phase inlet boundary conditions – nozzle scale variation 
Case no. S-1 S-2 S-3 S-4 S-5 S-6 

Dt 0.904 1.808 3.616 5.424 7.232 9.04 
ξc 0.240 
Pc 550 
τc 4.15 

ntotal 18.6e15 
λ 4804660.751 

 
  



3.2 Grid convergence study 
The grid convergence study was performed on the geometry given in above section for Shegal’s 150 psi case. The 

chamber pressure is 150 psi and the total number of particles at chamber is 2.612e15. The mass mean diameter at 
chamber is 0.79 µm and the corresponding rate parameter of exponential distribution is 4804660.751 using PD 
algorithm. The grid sizes used are 132x60 and 265x80. We are also performing the simulation on 381x100 grids, but it 
requires exceptionally long time to get the converged solution (approximately 30 days) so it is not included here. The 
results of grid convergence study are given in Fig. 3.3 and 3.4 for the mass mean diameters. The mass mean diameters 
monitored along the wall and axis are given in Fig. 3.3 and values measured at nozzle exit in radial direction are given 
in Fig. 3.4.  

It is easily seen that the mass mean diameters in Fig. 3.3 are slightly sensitive to the meshes studied. The mass 
mean diameter varies slightly after the throat following the axis and it has slightly larger value on 265x80 than 132x60 
following the wall. However, the mass mean diameter differences between two cases are approximately less than three 
percent. In addition, there is slightly discernable difference of mass mean diameters at nozzle exit between two cases. 
This difference is observable in Fig. 3.4 at the center and wall but the amount of difference is still under three percent. 
It looks like that the grid should be chosen carefully at around the center line after the throat and the wall for more 
accurate prediction. However, these differences do not result in the averaged value of particle size at nozzle exit as it 
is shown in table 3.8, because the differences present only in very tiny regions. The averaged mass mean diameters at 
nozzle exit plane of two cases are 0.878 and 0.879 µm.   

 
 
 
 

Table 3.8 Averaged particle characteristics at nozzle exit planes 
Grid size. 132x60 265x80 

D10 0.213 0.213 
D43 0.878 0.879 
Dm 0.168 0.168 
σs 0.687 0.687 

 
 
 

 
Figure 3.3 Axial variation of the mass mean diameter along the wall and axis 



 
Figure 3.4 Radial variation of the mass mean diameter at nozzle exit planes 

 
 
3.3 Results and discussions 
3.3.1. Comparison between the prediction and Crowe et al. [50]’s experiments 

A series of simulations was carried out to predict mass mean diameter at nozzle exit in the nozzle configuration 
given by Crowe et al.[50]. As described above, the small solid rocket motors are fired into the collection tank with the 
nozzle [50] and without nozzle [51] to assess the particle conditions obtained directly from the chamber. Ther results 
are presented in Figure 3.5. The chamber pressure was changed by varying the propellant burning area with a fixed 
nozzled attached. The experimental chamber pressures are approximately 320, 570, 900, and 1000 psi. According to 
Crowe et al. [50], they observed the chamber pressure variation during test, therefore, we chose the pressure values 
from Hermsen [10] to account for the pressure variation. The chamber pressures of simulations are 470, 650, and 980 
psi and the corresponding case numbers are from C-1 to 3, respectively. The averaged mass mean diameter at nozzle 
exit plane is obtained from the simulation. The predicted results are presented in figure 3.5 and we observed a good 
agreement between the measured and predicted particle size over 500 psi chamber pressure. In case of 650 psi 
chamber pressure, the predicted mass mean diameter is slightly smaller than the minum experimental value at 570 psi 
chamber pressure. However, the mass mean diameter used in the simulation, 0.74 µm, corresponds to the lowest 
measured mass mean diameter directly obtained from the motor. We expect to obtain the larger mass mean diameter 
using the maximum measured mass mean diameter in the spread. At the lower pressure level, 470 psi, the predicted 
mass mean diameter is approximately 30% less than the measured value at 320 psi. Although the other collision 
mechanisms which are not included in the modeling might be significant in this range, the predicted value is still in 35% 
error range of Hermsen’s correlation.       
 
 
 
 
 
 
 
 



 
Figure 3.5 Predicted and measured mass mean diameter at nozzle exit planes  

                                                of particles obtained from Crowe et al.[50] 

 
 
3.3.2 The effect of chamber pressure 

The current modeling described previously was compared here to Hermsen’s correlation and the dependence of 
mass mean diameter on the chamber pressure level was analyzed. A series of simulations was performed to compare 
the results to the correlation under the nozzle configuration used by Shegal[53] for 150psi chamber pressure. The 
corresponding case numbers are from P-1 to 6. 

Figures 3.6-9 show the effect of the chamber pressure on the mass mean diameter along the axis and wall, and at 
nozzle exit plane. Figure 3.6 shows that the largest growth rate ocurrs in the convergent section, specially, the most 
growth occurs in short region in front of the nozzle throat. The mass mean diameter after passing the throat shows 
little growth in divergent section. The breakup mechanism due to velocity lags might be balanced with collision, then 
the mass mean diameter approaches a certain value in this region.   

Figure 3.7 shows the variation of mass mean diameter in the boundary layer and it shows more complicated 
variation than centerline case. It is observed that there exist three peaks for all cases. The first peak corresponds to the 
region which the geometrical compression starts from. At this corner, the significant shearing motion of mean flow 
occurs due to the recirculation then it is responsible for the growth of particles. This finding is significant since it 
explains the importance of smooth geometry. The second peak corresponds to the maximum mass mean diameter 
regions formed by turbulence motion. Here we did not include the results obtained using only turbulent 
collision/breakup mechanism, the maximum mass mean diameter occurs at this region as we reported it in the 
previous report. The interesting results about this peak, the collision effects due to turbulence motion are less effective 
with larger chamber pressure (or collision due to mean flow is more effective than turbulence motion). It is clearly 
observed that the area taken by this peak is wider with low pressure than high pressure case. The third peak is the 
location which the breakup process becomes dominant due to the velocity lag. As it is shown in the figure, the 
decrease of mass mean diameter at this region is more significant in high chamber pressure case than low pressure 
case. The reduction rate is large with high pressure at this region. The interesting observation is that this peak is 
located after the throat with low chamber pressure and located before throat with high chamber pressure. Finally, it is 
observed that the variation of mass mean diameter in the short region at around nozzle exit. 

Figure 3.8 shows the variation of the mass mean diameter in radial direction at nozzle exit plane. It is clearly 
observed that the large amount of growth occurs within boundary layer and it occurs more in high pressure case than 
low pressure case. However, the mass mean diameter is almost constant in most region in this direction. The growth 
occurring within center region is mostly due to the mean flow shearing as the velocity in radial direction increases 
radially. 

The averaged value of particle size at nozzle exit is summarized in table 3.9 and the predicted mass mean diameter 
at nozzle exit is compared with Shegal’s experiments, Crowe and Willoughby[52]’s prediction, and Hermsen’s 
correlation in figure 3.9. The predicted results are mostly less than the measured results by Shegal. However, Dobbins 
and Strand [55] lately indicated that Shegal’s experimental results did not agree with other measurements. Dobbins 



and strand found that the particle size increases by a factor of 1.7 with a ten-fold increase while Shegal’s experimental 
results gave increases by a factor of 5 with a ten-fold increase, approximately. Therefore, it may not be meaningful to 
compare the prediction with Shegal’s results. Crowe and Willoughby’s calculation considering the slip velocity 
between the particle and surrounding and the momentum exchange in collision also had the less values than Shegal’s 
results.  

The nozzle inlet conditions reported by Fein[54] for Shegal’s 150 psi case are 0.240 of the particle concentration, 
4.15 of the particle residence time, and 0.79 µm of the mass mean diameter. Using these initial conditions, the 
simulation performed for various pressures and Hermsen’s correlation is calculated. Over all chamber pressures, the 
variation trend is much similar to Hermsen’s correlation, but the predicted results are larger than the results from 
Hermsen’s correlation. However, the predicted values are within the error bounds of Hermsen’s correlation (35%) 
over 500 psi chamber pressure and slightly over 35% under 500 psi. In addition, as explained above, Shegal reported 
the larger mass mean diameter than other studies. Because he used the same technique to obtain the particle size 
directly from the motor, his results might have a larger particle size than the actual size. Therefore, we expect that the 
resultant particle size using the actual inlet particle size may completely fall in the error bounds of Hermsen’s 
correlation.  

 
 

Table 3.9 Averaged particle characteristics at nozzle exit planes 
Case no. P-1 P-2 P-3 P-4 P-5 P-6 

D10 0.218 0.224 0.232 0.237 0.243 0.250 
D43 0.971 1.125 1.299 1.494 1.693 1.908 
Dm 0.170 0.172 0.174 0.175 0.176 0.178 
σs 0.706 0.733 0.758 0.783 0.805 0.824 

 
 
 
 
 

 
Figure 3.6 Axial variation of the predicted mass mean diameter along the axis  

 
 

 
 
 



 
 
 
 
 

 
Figure 3.7 Axial variation of the predicted mass mean diameter along the wall  

 
 

 
Figure 3.8 Radial variation of the predicted mass mean diameter at nozzle exit planes 

 
 



 
Figure 3.9 Predicted and measured mass mean diameter at nozzle exit planes in 

                                               Shegal[53]’s experimental condition – the effect of chamber pressure 

 
3.3.3 The effect of particle concentration in chamber 

The current modeling described previously was compared here to Hermsen’s correlation and the dependence of 
the particle concentration in the chamber was analyzed. A series of simulations was performed to compare the results 
to the correlation under the nozzle configuration used by Shegal[53] for 150psi chamber pressure. Increasing the 
Aluminum loading in propellants results in the large number of particles in chamber, consequently, it has more 
possibility of collision passing through nozzle. The corresponding case numbers are from M-1 to 6. 

Figures 3.10-13 show the effect of the particle concentration on the mass mean diameter along the axis and wall, 
and at nozzle exit plane. All of figures show the same trends obtained in the chamber pressure variation cases. An 
interesting observation from figure 3.11 is that the first peak corresponding to the region of the corner shows very 
little variation according to the variation of particle concentration. The third peak is located almost exactly at the 
throat. 

The averaged value of particle size at nozzle exit is summarized in table 3.10 and the predicted mass mean 
diameter at nozzle exit is compared with Hermsen’s correlation in figure 3.13. The variation trend is much similar to 
Hermsen’s correlation over all particle concentrations used in simulations, but the predicted results are larger than the 
results from Hermsen’s correlation. Below the particle concentration 0.2, the predicted values are slightly larger than 
35 % of Hermsen’s correlation and the predicted values are approximately 35% larger than Hermsen’s correlation for 
larger particle concentrations than 0.2. As discussed in previous section, Shegal’s results might have a larger particle 
size than the actual size. Therefore, we expect that the resultant particle size using the actual inlet particle size may be 
within the error bounds of Hermsen’s correlation.  

 
 
 

Table 3.10 Averaged particle characteristics at nozzle exit planes 
Case no. M-1 M-2 M-3 M-4 M-5 M-6 

D10 0.229 0.232 0.234 0.237 0.240 0.243 
D43 1.274 1.357 1.440 1.524 1.606 1.693 
Dm 0.172 0.173 0.173 0.174 0.175 0.176 
σs 0.756 0.768 0.778 0.788 0.796 0.805 

 
 

 
 
 
 



 
 
 
 
 

 
Figure 3.10 Axial variation of the predicted mass mean diameter along the axis  

 
 

 
 

 
Figure 3.11 Axial variation of the predicted mass mean diameter along the wall  

 
 
 

 
 



 
 
 
 

 
Figure 3.12 Radial variation of the predicted mass mean diameter at nozzle exit planes 

 
 

 
Figure 3.13 Predicted and measured mass mean diameter at nozzle exit planes in 

                                               Shegal[53]’s experimental condition – the effect of particle concentration 

 
  



3.3.4 The effect of nozzle scale 
A last series of simulations were performed to assess the effect of nozzle scale on the mass mean diameter using 

the nozzle configuration used by Shegal[53] for 150psi chamber pressure. As discussed in Crowe and Willoughby[52], 
an increase in nozzle scale gives longer particle residence time in the nozzle, which implies more growth. The 
corresponding case numbers are from S-1 to 6.  

Figures 3.14-17 show the effect of the nozzle scale on the mass mean diameter along the axis and wall, and at 
nozzle exit plane. All of figures show the similar trends obtained in the chamber pressure variation cases. An 
interesting observation from figure 3.15 is that the second peak of S-6 shows very large decrease of mass mean 
diameter in boundary layer. The second peak becomes more noticeable as the nozzle scale increases. From figure 3.16, 
it is observed that the large amount of growth occurs within boundary layer and it occurs more in large scale nozzle 
than small scale.  

The averaged value of particle size at nozzle exit is summarized in table 3.11 and the predicted mass mean 
diameter at nozzle exit is compared with Hermsen’s correlation in figure 3.17. The variation trend is very similar to 
Hermsen’s correlation in small scale nozzles, as the mass mean diameter increases with an increase of nozzle scale. 
However, it is observed that the mass mean diameter decreases slightly with an increase of nozzle scale in large scale 
nozzles. Over all nozzle scales except the mimum of scales, the results are in 35% error bounds of Hermsen’s 
correlation.  

 
 

 
Table 3.11 Averaged particle characteristics at nozzle exit planes 

Case no. S-1 S-2 S-3 S-4 S-5 S-6 
D10 0.243 0.255 0.273 0.284 0.286 2.830 
D43 1.693 1.943 2.261 2.419 2.474 2.437 
Dm 0.176 0.182 0.192 0.198 0.199 0.198 
σs 0.805 0.823 0.840 0.845 0.848 0.847 

 
 
 

 
Figure 3.14 Axial variation of the predicted mass mean diameter along the axis 

 
 
 
 
 
 



 
 

 

 
Figure 3.12 Axial variation of the predicted mass mean diameter along the wall 

 
 

 

 
Figure 3.13 Radial variation of the predicted mass mean diameter at nozzle exit planes 

 



 
     Figure 3.14 Predicted and measured mass mean diameter at nozzle exit planes in  

                                                  Shegal[53]’s experimental condition – the effect of nozzle scale 
 

 

Conclusions 

 
A new model is under development to assess coalescence and breakup processes in rocket combustor and nozzle 

environments. The one-way coupled population balance equation describing the change of number concentration by 
the modeled particle to particle interactions and aerodynamic forces is solved using the direct quadrature method of 
moments (DQMOM). The required parameters to describe the collision and breakup processes are modeled in laminar 
and turbulent flow.  

The modeling was compared to experiments and correlation with respects to the variations in chamber pressure, 
particle concentration in chamber, and nozzle scale. The comparisons show that the predicted mass mean diameters 
are in a good agreement with experiments and correlation over 500 psi chamber pressure. The predicted mass mean 
diameters also have a good agreement with correlation over 0.2 mole/100 g particle concentration and within all tested 
nozzle scales. These results indicate the validity of the current model for particle growth/reduction.  

Coalescence is shown to occur in the convergent section leading to the throat, while breakup processes tend to 
become important in the throat region and exit cone. In addition, the modeling shows that more growth occurs in 
boundary layers than mean flow regions.  

The restriction of current model is the necessity of the accurate information on the particle characteristics in the 
chamber. Therefore, the analytical techniques accurately addressing the particle size and concentration in chamber 
shoud be obtained for more accurate predictions.   
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Appendix A – On the Dynamic Response of Rocket Swirl Injectors Part I. 
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Appendix B – On the Dynamic Response of Rocket Swirl Injectors Part II. 
Nonlinear Dynamic Response 
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Appendix C – Experimental Study Swirl Injector Dynamic Response using a Hydro-
Mechanical Pulsator 
Benjamin Ahn and Maksud Ismailov and Stephen D. Heister 
 

The dynamic response of a classical (simplex style) swirl injector has been studied 

experimentally using a super-scale transparent model with water as the working fluid.  A 

unique mechanism was developed for imparting controlled perturbations to the injector inlet 

massflow by successively blocking and opening tangential inlet flow passages using a rotating 

cap over the inlet ports.  Two vortex chamber designs (long and short) were evaluated to assess 

the effect of this important design variable.  High speed imaging of the spray cone and air 

core/liquid interface inside the vortex chamber was used to assess dynamic behavior at 

frequencies up to 500 Hz. Resonant conditions were detected in both designs and both 

measurements gave similar frequencies for the resonant peak.  The resonant peak was 

compared against recent theory due to Ismailov11 and results compare well only when the 

theory is adjusted to account for potential water hammer effects induced by the rotating cap.  

Nomenclature 
Pullage  =  ullage pressure  

Pmanifold =  manifold pressure  

Dn  =  diameter of nozzle  

Rn  =  radius of nozzle  

Rin  =  radius to centerline of inlet channel (Fig. 1)  

Rt  =  radius of tangential inlet  

Rvc  =  radius of vortex chamber  

rvc  =  radius of air core in vortex chamber  

Lvc  =  vortex chamber length  

Lv  =  effective vortex chamber length including ½ nozzle contraction length 

vt  =  velocity in tangential inlets  

θ’  =  total spray angle fluctuation amplitude  

θavg  =  average total spray angle  

eta  =  core disturbance amplitude (half air core diameter amplitude over mean diameter) 



I. Introduction 

 
Swirl injectors have a wide array of application to both airbreathing and rocket combustors due to their ease of 

manufacture and excellent spray production characteristics. The theory for steady operation of these devices is well 
established (at least for ideal inviscid fluids) and results from these analyses have been calibrated and correlated 
against numerous experimental data1. In contrast, the dynamic characteristics of these devices have been much less 
studied2,3,4,5. There is ample motivation to study the dynamic behavior as in propulsion and combustion applications, 
there are numerous opportunities for the injector to resonate with processes in the combustor or downstream devices 
leading to potentially damaging consequences.   

The presence of the vortex chamber (Fig. 1) which interacts directly with the downstream environment due to the 
presence of a gas or air core at its center, leads to unique dynamic properties for this device. The strong internal 
feedback coupling of the flow rate and pressure fluctuation across different parts of the swirl injector lead to 
fluctuations in the volumetric liquid flow rate at the exit of tangential inlets into the vortex chamber, which is delayed 
by certain phase shift. These pulsations are manifested in waves that traverse the air core of the vortex chamber, grow 
in amplitude as the film thins in the nozzle, and exit into the spray cone/film formed in the near exit region. The 
surface waves lead to fluctuations in the nozzle flow which will in turn influence film thickness, spray formation, and 
spray angle. In addition, other properties, such as circumferential velocity and pressure drop fluctuations in the liquid 
vortex, will all vary due to pressure fluctuations across the injector. All these coupling effects will result in unsteady 
drop size distribution and spray angles.  
 Most of the prior knowledge in injector dynamics has been contributed by Dr. Vladimir Bazarov, whose studies at 
Moscow Aviation Institute span much of the past four decades2,3,6,7.   More recently, investigations in South Korea8 
and the United States9-13 have amplified on the initial body of work.  Bazarov’s initial theory shows some opportunity 
for injector resonance at intermediate frequencies, but recent work of this group has established a simple 
relationship9,11 to approximate resonant frequencies using the analogy of waves entering a harbor of a fixed volume.    

Experimental work in this field is challenging as most of the dynamic character of interest occurs at very high 
frequencies of hundreds if not thousands of Hz.  Hydromechanical pulsators tend to drop off in pulsation amplitude at 
these frequencies, but they have been used successfully in a number of studies8,14.  Piezoelectric devices are capable of 
much higher frequencies, but pulsation amplitudes (stroke lengths) tend to be somewhat limited.  One example of high 
amplitude modulation at high frequencies is due to Anderson15. 

In the present study, it was decided to use super-sized injector in order to reduce the frequencies over which 
response might be detected.  In an attempt to maximize the flow disturbance due to pulsation, a design was developed 
to physically block tangential inlet channels using a rotating cap with multiple holes around its periphery.  The 
objective of the work was to quantify the dynamic response over a range of frequencies and flow rates for two distinct 
injector designs.  The following section provides a description of the test apparatus and facility, and results and 
conclusions are provided subsequent to this discussion. 

II. Experimental Apparatus and Methods 

Swirl Injector and Pulsator 

Figure 1 provides a schematic representation of the super-sized swirl injector design utilized in the study.  Two 
units, using short and long transparent vortex chambers, were fabricated to use a common nozzle design with using a 
45 degree half-angle converging section as depicted in Fig. 1.  Table 1 provides a summary of major dimensions in the 
two test articles.  

The pulsator consists of a shaft (a) driven by an electric motor, which rotates a dynamic inlet cap (e) that has 16 
tangential holes of the same diameter as the holes of the static inlet cap (d) as shown in Fig. 2. As the dynamic inlet 
cap (e) rotates about the shaft, the holes in it align periodically with the holes in the static inlet cap as shown on the 
right side of Fig. 2, thus allowing the liquid to flow into the vortex chamber. When two sets of holes meet and start to 
overlap, a mutual cross-sectional area starts to form and reaches a maximum value when two sets of holes are fully 
aligned. The area then starts to decrease as the dynamic inlet cap continues to rotate. It is the change in this mutual 
cross-sectional area that gives the pulsating effect in this design. Different numbers of holes in the dynamic inlet cap, 
as well as variable rotational speeds, generate pulsation frequencies ranging from 0 Hz to 500 Hz, at a maximum 
manifold pressure of 80 psi.  
      The swirl injector and the pulsator are assembled into the manifold (g), which includes a pressure tap (k) on the 
manifold sidewall aligned with the tangential swirl chamber inlets with its axis lying in A-A plane. A Druck pressure 
transducer with a response frequency of 2.5 kHz is used to measure the pressure. Sampling rate for pressure 
measurement was 1000 samples/sec. The entire vortex chamber is made from transparent cast acrylic to observe the 
air core and film thickness inside the swirl chamber, and the pulsator and manifold are made of 304 stainless steel. 



 
Figure 1: Nomenclature defined for swirl injector.  

 

 
Table 1: Swirl Injector Specifications 

 

 Parameter Short Injector Long injector 
  (inch) (mm) (inch) (mm) 
Radius of nozzle Rn 0.250 6.350 0.250 6.350 
Inflow radius Rin 1.125 28.575 1.125 28.575 
Radius of tangential inlet Rt 0.125 3.175 0.125 3.175 
Radius of vortex chamber Rvc 1.250 28.575 1.250 28.575 
Length of tangential inlet Lt 0.450 11.430 0.450 11.430 
Length of nozzle Ln 1.000 25.400 1.000 25.400 
Length of vortex chamber Lvc 5.000 127 6.125 155.575 

 

 
Figure 2:  Left - Schematic drawing of swirl injector pulsator: a) shaft, b) vanes, c) swirl chamber, d) 
injector inlet cap, e) dynamic inlet cap, f) manifold cap, g) manifold, h) bearings, i) water supply inlet, j,k) 

pressure transducer taps.  Right – View of cross section A-A, where holes of the dynamic inlet cap and injector 
inlet cap are aligned. 

Test Facility Design 



The swirl injector experiment (Fig. 3) was housed in the Two Phase Flow laboratory, Neil Armstrong Hall of 
Engineering, at Purdue University. The water storage tank, which stores 120 gallons of water, is certified for 150 psia 
maximum ullage pressure. A 1-1/2 inch manual ball valve is used as the run valve. The air which is supplied by 
building’s compressor and regulated by a 300 psig manual pressure regulator is used to pressurize the water tank. 
Water stored in a pressurized air tank is transported to the test article via a 1-1/2 inch flex-hose, which is followed by a 
0.5 inch flex hose. Water fills the manifold, enters through the pulsator, and exits thorough the nozzle. Test articles, 
optical instruments, and camera are mounted on a 10 by 4 foot optics table. The spray discharging into ambient 
environment is collected using a clear 15 by 15 inch square tube before entering a dump tank for it to be drained. The 
dump tank is a 30 gallon plastic tank with a 0.75 inch drain valve. For flow visualization, a high speed camera is 
placed downstream of the nozzle exit, opposite to a concentrated light source. A 6x24 inch 1 KW Altman Lightning 
Co stage light is used as a back light. A Fresnel lens, 6 inch in diameter, 0.06 inch thick, is used to bend and focus the 
rays to form a single, concentrated beam of high intensity light from the stage light. The focused light then passes 
through a 0.5 inch thick acrylic diffuser plate before reaching the plane of the test article. The experiment was tested 
with a horizontal flow with the assumption that the gravity forces were unimportant due to the internal flow 
acceleration from vortex chamber to nozzle being much greater than the gravity. Reference 10 provides additional 
details on the facility design and operations.   

 
Figure 3:  Schematic of experimental apparatus. 

Image Acquisition and Processing 

Images are captured using a high speed camera and a commercial software video package16. A 36 mm zoom lens is 
used to enhance the images, by varying the focal length throughout the experiment.  Prior to each set of tests, images 
are calibrated (pix/inch) by placing a 25 lines-per-inch resolution plate at the injector axis. The high speed camera 
settings for spray and air core acquisition are tabulated in Table 2. The procedure for detecting the boundary of the 
spray and calculating the cone angle consists of the following steps: 

1. Capture the spray using a high speed camera and save the avi file using a commercial video package. 

2. Select a frame from the recorded avi file and create a grayscale intensity image as well as zero pad the signal. 

3. Create a binary image from the grayscale intensity image using the function graythresh using a commercial 

software pacakge17. This function utilizes Otsu’s method which chooses the threshold to minimize the 

interclass variance of the black and white pixels.  



4. From the binary image, trace the spray cone boundary where non-zero pixels represent the boundary of the 

spray cone and zero pixels constitute the white background. 

5. Detect the top and the bottom boundaries of the spray cone at a desirable downstream location from the exit 

nozzle. 

6. Use the two points and then  least-square fit a line parallel to the boundaries of the spray cone, and find an 

intersection point that lies on the axis of the injector to calculate the spray cone angle. In order to determine 

the axis of the injector, a picture was taken of a known calibration rod that was placed on the axis of the exit 

nozzle.    

7. Repeat the process for all frames for the total duration of the captured video. 

8. Plot changes in total cone angle as a function of time. 

9. Repeat the process for different downstream locations from the exit nozzle plane. 

Applying the steps above, oscillation patterns in spray cone angles as a function of time can be determined. 
Similarly, this technique is used to measure the oscillation of the air core diameter as a function of time. Note that 
the local radial distortions are irrelevant since the experiment focused looking at a planar projection of the cone. 
These signals are then analyzed using a fast Fourier transform of the spray cone angle or air core radius histories10.  

Table 2: High speed camera settings for the spray and air 
core acquisition 

Parameter Nozzle Exit 
Spray Angle 

Vortex Chamber 
Air Core Diameter 

Exposure time (microsec) 50 63 
Image rate (pps) 10000 15037 
f/# f/11.0 f/11.0 
Duration (sec) 0.7207 0.7188 
Image width (pix) 512 512 
Image height (pix) 384 256 
Image resolution (mm/pix) 0.240 0.126 
Number of images per test 7207 10810 

 
The uncertainty analysis for the experiment was calculated using the methodology of Coleman and Steele14. For the 

spray cone half angle, the two measured variables were 1) the downstream distance from the nozzle exit plane and, 2) 
the distance measured from the spray boundary to injector axis. It was determined that the uncertainty for spray cone 
half angle between 40 and 50 degrees was less than 2%. Similarly, uncertainty for typical air core diameter 
measurement ranging from 0.25-0.5 inches (6-12 mm) was less than 6 %.   

III. Results and Discussions 

The swirl injector experiment was conducted with 16 hole dynamic inlet cap at three ullage pressures, 55, 70 and 
80 psia (3.4, 4.8, 5.4 atm), to evaluate the effects of the unsteady flow on the formation of the spray and the air core 
diameter. During the experiment the internal flow did not show any signs of two phase flow. Pulsating frequencies 
were varied, up to 500 Hz, by adjusting the motor speed. For all ullage pressures, images of the spray cone near the 
exit nozzle and the air core inside the vortex chamber, as well as the pressure readings at the tangential inlets (pressure 
transducer (k) in Fig. 2) were captured and recorded simultaneously. Figures 4 and 5 provide typical manifold pressure 
measurements for the long and short injectors respectively at a tank ullage pressure of 80 psi (5.4 atm).  The manifold 
sees lower pressure then the ullage pressure because of, 1) the pressure drop across the plumbing system and, 2) the 
presence of the dynamic pressure of the swirling flow created by the dynamic cap in the manifold.  As the manifold is 
of limited volume, it does respond to the transient opening and closing of tangential inlet ports.  At low frequencies, 
the manifold pressure oscillation is roughly 10-15% of the mean pressure, while at higher frequencies the oscillation 



amplitude is reduced to a few percent of the mean.  There do not appear to be large differences in the magnitude of 
these oscillations between the long and short injectors. 

The pressure signals were analyzed for frequency content using the FFT utility in a commercial software 
package17.  As expected, strong peaks were found at the low driving frequency (61 Hz in long injector, 50 Hz in short 
injector).  At these lower frequencies, the second harmonic frequency showed the next highest response – this is 
evident as a “beat frequency” in both of the signals in Fig. 4.  Some activity was noted at the subharmonic tone, but at 
a substantially reduced level. 

The higher frequency cases showed an interesting dynamic content.  For both the 160 Hz case with the long 
injector and 140 Hz case with the short injector, the subharmonic (80 and 70 Hz, respectively) showed FFT response 
comparable or greater than that of the primary driving frequency.  Negligible response was noted at the second 
harmonic for these higher frequency cases, the short waves associated with this harmonic must be significantly 
damped in the radial passage between the rotating cap and the manifold outer wall.   

 

 
Figure 4:  Measured manifold pressures (location k in Fig. 2) for the long injector at two different frequencies, 

at an ullage pressure of 80 psi (5.4 atm) 

 
Figure 5:  Measured manifold pressures (location k in Fig. 2) for the short injector at two different frequencies, 

at an ullage pressure of 80 psi (5.4 atm) 

 
 
The average mass flow produced by the injector was determined over a range of frequencies using a standard 

“catch and weigh” procedure. For all three ullage pressure settings 55, 70 and 80 psia (3.7, 4.8, 5.4 atm), the motor 
was set to four different speeds, in order to determine the mass flow rate at different pulse frequencies. The 
experiment was run and the spray was captured for 60 seconds to calculate the mass flow rate in kilogram per second. 
The resulting measurement has a maximum uncertainty of 1.7 percent.  Assuming a steady flow at the average 



manifold pressure, the theoretical mass flow rate calculated using classical swirl injector inviscid theory6  was 0.476, 
0.558, and 0.606 kg/sec for Pullage at 55, 70, and 80 psia (3.4, 4.8, 5.4 atm) respectively for both injectors.  

The measurements are summarized in Figs. 6 and 7.  In general the average measured mass flow rate decreased 
slightly as frequency increased, presumably due to the dynamics of the tangential inlet opening and closing at greater 
rates as inlet cap speed increased.  Even though it utilizes the same inlet and nozzle configuration, the long injector 
generates flow rates about 10% higher than that of the short injector. Qualitatively, this may be explained by the fact 
that longer chamber imposes more friction on the rotating flow, hence decreases its momentum, which makes the core 
diameter to decrease, which makes the cross sectional area of the flow in the nozzle of increase, which increases the 
flow rate19.The discharge coefficient data (Fig. 7) show values above unity for most of the conditions measured 
implying that measured flows are higher than those computed on a 1-D inviscid basis.  Since the theoretical values 
should represent an upper bound, it is speculated that there may have been some water hammer effects induced in the 
annular passage between the rotating cap and the outer manifold wall.  In particular, the rotation of the cap imposes a 
large dynamic response at the inlet to the tangential channel (a main factor motivating this type of pulsator design) 
which would presumably be substantially larger than the oscillation detected in the manifold.  The postulated water 
hammer effect is stronger on the long injector as the radial passage over which the pulsations occur is longer in extent 
as well.  Manufacturing issues preclude the installation of a pressure tap within this buried location, so there is not 
sufficient information to confirm this hypothesis, however the manifold pressure measurements (Figs 4,5) do show 
slightly higher pulsations for the long injector.   

 

 
Figure 6: Measured average mass flow rate for 16 hole dynamic inlet cap for the short and the long swirl 

injector.   

 

Figure 7: Discharge coefficient behavior for the short and the long swirl injector.   
 

Spray Angle Measurements 

Over a broad range of frequencies, the pulsations within the conical sheet were easily viewed with the naked eye.  
Using the signal processing technique outlined in the prior section, quantitative measurements of spray cone angle 
were made at various axial stations. Figure 8 shows two typical images captured by the high speed camera during a 
forced excitation of the injector.  The spray cone at the two separate times shown in Fig. 8 has cone angle varying as 
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much as 7.9 degrees when measured at location 1.0 Dn downstream from the nozzle exit plane (denoted as the vertical 
line in the images). In addition, the intensity variations of the light passing through the conical films indicate that the 
spray film thickness also changes during the pulsed state. In Fig. 8 the captured spray seen on the right has a larger 
maximum film thickness than that on the left.  The high amplitude pulsations at this modest frequency cause 
corrugations in the sheet as evidenced in both images. 

 
Figure 8:  Typical images of the conical sheet in the near exit region of the orifice using the short injector at a 

pulse frequency  100.1 Hz and Pullage ~ 55 psia.  The measured spray angle is 94.6 deg (a) and 86.7 deg (b). 

  

Figure 9 illustrates the spray angle variation at 1.0 Dn downstream from the nozzle exit plane on the left, and the 
corresponding Fast Fourier Transform (FFT) signal on the right. The short injector data is depicted here for a manifold 
pressure of 55 psia.  For frequencies greater than 30 Hz ,the spray cone angle varies in a saw-toothed manner as 
evidenced in the waveforms at the three frequencies shown. If the total angle is decomposed into two halves extending 
from the axis of the nozzle to the boundary of the spray cone, the top and the bottom half of spray angle generally 
show to be in phase.    

The images on the right side of Fig. 9 are the FFTs of the waveform signals on the left.  The FFTs show a strong 
peak at the driving frequency whose amplitude is dependent on the driving frequency itself.  Large amplitude 
pulsations are present (well within the accuracy of the measurement) over the frequency range shown.  There is little if 
any evidence of subharmonic or higher harmonic content, although the latter could not be assessed at the highest 
frequency due to potential aliasing errors. 

Figure 10 shows the overall cone angle response curves for both the short and long injectors at the three ullage 
pressures used in the study. The amplitude of the cone angle fluctuation is not the same for all driving frequencies. 
Results are shown using two distinct measurement stations 1 and 2.5 nozzle diameters downstream of the orifice exit 
plane. Despite the existence of forces such as surface tension, aerodynamic, and gravity, the major portion of the spray 
angle pulsation is the driving force from the pulsator. In general, the results at all three measurement stations show the 
same trend, although the results at x=2.5 Dn show the largest amplitude response in this location furthest from the exit.  
The maximum response occurs near 300 Hz for the short injector and at frequencies near 250 Hz for the longer 
injector.  The difference in the maximum frequency response is due to the short injector having a higher resonant 
frequency than the long injector. Power limitations in the motor driving the swirl cap did not allow us to fully capture 
the peak response in the long injector at the highest manifold pressure.  In general, peak response frequencies tend to 
increase with ullage/manifold pressure.  

There is also some evidence of a peak in the response at low frequencies below 100 Hz, although this peak is less 
pronounced than the main resonance.  The swirl cap is rotating at fairly low speeds at the lowest frequencies evaluated 
and it is possible that the pulsations are becoming lower in amplitude as a result.  Clearly, the  cone angle response (as 
measured on this basis) should drop to zero at zero frequency as we would expect a steady conical sheet under this 
condition.   For this reason, the measurement is not completely reflective of dynamic response, however, it is believed 
to be a good indicator at the higher frequencies where waves traveling along the sheet are more comparable in length 
to the sheet’s thickness. 



 

 

 
Figure 9:  Measured spray cone angle for short injector at 1.0 Dn for Pullage ~ 55 psia (left). Frequencies 

detected from applying FFT to total spray cone angle data (right). Peak amplitude is located at 100.1 Hz (top), 
300.3 Hz (middle) and 440.7 Hz (bottom). The actual pulsation frequency was 101.0 Hz (top), 300.0 Hz (middle) 

and 442 Hz (bottom).  

 

 



 

 
Figure 10:  Frequency response curves for summary plot of spray cone magnitude measured at 1.0 and 2.5 Dn 
downstream from the nozzle exit plane at Pullage 55, 70 and 80 psia for the short injector (left column) and the 

long injector (right column).   

 
In order to understand the evolving profile of the spray cone generated during the dynamic state a series of images 

of the same pulsed flow condition were captured near the exit nozzle. Figure 11 shows two distinct forms of spray 
being generated. The image on the left is shaped like a trumpet (convex), with the spray curing outward from the axis 
of the injector, whereas the image on the right is shaped like a tulip (concave) with the spray boundary turning inward 
to the axis of the injector. This spray angle oscillation is due to changes in circumferential velocity inside the vortex 
chamber. As the holes in the dynamic cap rotate about the holes in the stationary cap, the mutual cross-sectional area 
changes, altering the velocity of the flow entering tangential inlets (that is mass flow rate). This change in the flow 
velocity at the inlet changes the circumferential velocity inside the vortex chamber and propagates downstream 
towards the nozzle exit and results in the oscillation of the cone angle. Finally, a pulse wave is observed, where the 
atomizing jet breaks up into regularly spaced clumps along the flow direction20.  The bunching of cones and waves 
seen in the experiment was similar to the findings reported in previous work15.  

 
Figure 11: Gross appearance of the conical sheet boundary: a) Trumpet-shape and b) tulip conical sheet shapes 

at Pullage ~ 70 psia for short injector. 

Dynamic Measurement of Air Core Diameter 



Another set of experiments was performed to measure the air core diameter fluctuation inside the vortex chamber 
during the dynamic state. Figure 12 shows air core surfaces at two different times while the pulsator is in operation. 
There is a clear undulation in the air core diameter, visible in Fig. 12, indicating the existence of a wave superimposed 
with the air core inside the vortex chamber. This phenomenon was observed for frequencies up to 500 Hz, which was 
the maximum frequency obtained with the 16 hole dynamic cap. This phenomenon was not observed in a non-pulsed 
system, which was confirmed by the cone angle fluctuation diminishing to zero in Fig. 10 

 
Figure 12: Air core inside the long vortex chamber with pulse frequency ~ 484 Hz and Pullage ~ 55 psia. Flow 

direction is left to right. 

 
The pulsator changed the vortex chamber air core diameter as much as 4.5% for some frequencies. It was noted 

that the air core diameter fluctuation magnitude maximized at certain frequencies indicating a resonance similar to that 
observed in the spray angle. Similar image processing was carried out on the air core diameter measurements and 
FFTs of these signals were constructed at various frequencies to assess overall response characteristics.   These results 
are summarized in Fig. 13 for both short and long injectors at ullage pressures of 55 and 70 psia where the distance 
A350 is at an axial station 2.15 inches (55 mm) of the nozzle exit plane.  We were unable to make measurements at 
the highest ullage pressure due to difficulties in providing adequate power from the motor to drive the swirl cap at this 
highest rotation rate.  Figure 13 shows resonant conditions at frequencies very similar to those detected with the spray 
angle measurements (Fig. 9).  In this case, there is no indication of a subharmonic peak and the amplitude of the 
pulsation grows toward a maximum at zero frequency as one would expect from linear theory.  There is some 
evidence of a second peak in the 55 psia ullage pressure data for the long injector, but this conclusion is tentative as it 
could not be replicated in the shorter injector and because there were only a few data points establishing this trend.  In 
general, the trend lines in Fig. 13 (and Fig. 10) are more for clarity in capturing the data than in suggesting specific 
curvature/slope in a given region. 

 

 



Figure 13:  Measured dynamic response of air core diameter inside the vortex chamber at Pullage 55 and 70 psia 
for the short injector (left column) and the long injector (right column). 

 

Comparison of Resonant Frequencies with Theory 

Recently, Ismailov developed an analytic expression for swirl injector resonance based on the wave speeds and 
volume of fluid within the vortex chamber.  The methodology follows a similar path as that used to find resonant 
wavelengths/frequencies for waves entering a deep harbor as the volume within the harbor interacts with waves 
entering its constricted entry much like waves in the vortex chamber interact with the nozzle of the swirl injector.  
Ismailov and Heister11 provide a derivation of this simple result, referred to the Abrupt Contraction Resonance Model 
(ACRM).  The conical inlet to the nozzle is necessarily neglected in this simple result and the vortex chamber is 
lengthened by ½ of the conical entry length to provide an approximate dimension for wave resonance.  The predicted 
primary resonance frequency, ω, from this model is: 
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Where tv is the injection velocity through then tangential inlets, Lv is the effective length of the vortex chamber 
including half of the nozzle contraction length, and rvc is internal radius to the surface of the film in the vortex 
chamber.  The vortex chamber film radius and tangential inlet velocity are coupled via the pressure drop across the 
film as presented in the classical swirl injector literature6,9.  This result indicates that shortening the vortex chamber 

length, Lvc or increasing the injector flow rate (i.e. tv ) will tend to increase resonant frequencies.  Using this result, 
resonant frequencies were computed for each of the three ullage pressures for both long and short injectors.  During 
this process, we became concerned that the dynamic swirl cap may be inducing effects not considered in the model as 
evidenced by the manifold pressure and discharge coefficient data in Fig. 4-7.  There appears to be evidence of water 
hammer effects that would substantially affect the inflow pressure/velocity as a result of the periodic opening and 
closing of tangential inlet passages.  For this reason, the effective feed pressure was raised in an effort to capture this 
effect; a value of 40 psia seems to provide an excellent result as indicated in Table 3.  In fact, the correction may likely 
be dependent on the speed of the rotating cap, but there is insufficient information to produce a logical result given the 
manifold pressure is the only measurement and this is far displaced from the tangential inlet.  Clearly this is an area 
that would benefit from further exploration.      
 Table 3 provides an overall comparison of the experimental measurements (both cone angle and air core diameter) 
with base ACRM and corrected ACRM results.  The experimental measurements are in good agreement (less than 
5%) between the two approaches.  The uncorrected ACRM values are significantly lower than those in the 
experiments.   Applying the 40 psia correction brings the ACRM values very close to the measured results.  While we 
believe that there is some basis for the correction, clearly more measurements are required to fully assess the dynamic 
character of the swirl cap and its influence on the massflow pulsation produced at various rotation rates. 

Table 3: Comparison of primary peak response frequencies (in Hz) of measured nozzle 
exit spray angle and values computed from the ACRM 

 Short Injector  Long Injector 
Pullage 55 psia 70 psia 80 psia  55 psia 70 psia 80 psia 

Measured Peak Spray 
Angle 305 324 345  241 261 n/a 

Measured Peak Vortex  
Core Diameter 288 307 ---  242 274 --- 

ACRM, uncorrected 205.7 240.9 261.8  170.7 200.0 217.3 
ACRM, corrected 290.3 316.3 332.4  241.0 262.6 276.0 

 
 

Generation of Travelling Waves 

A series of images of a propagating wave inside the long injector vortex chamber for excitation frequency set at 
491 Hz is shown in Fig. 14. Note, the two arrows on all images represent the location of the maximum air core 
diameter in each frame. 



 
Figure 14: Series of images of a propagating wave inside the long injector vortex chamber for Pullage 55 psia 

with pulse frequency set at 491 Hz. Flow direction is left to right. 

 
The following phenomena are observed. In frame (a), a surface wave is located at the head end of the vortex 

chamber. A surface wave which is generated by a flow disturbance at the head end propagates downstream along the 
injector axis, as captured in frames (b) through (e). The wave is travelling downstream and into the converging part of 
the vortex chamber while rotating about the axis of the air core with some large amplitude as captured in frames (g) 
and (h). When the wave reaches the nozzle, part of it goes into the nozzle, part of it reflects back. The wave that exists 
in the vortex chamber is a result of superposition of forward and backward traveling waves. Therefore, the observed 
wave length in the vortex chamber is not exactly equal to the wavelength that corresponds to 491 Hz. A newly 
generated wave then starts again from the vortex chamber head end and repeats the process. The wave images showed 
that the disturbance wave characteristics depend on the disturbance frequency, as this effect is occurring at the 
excitation frequency of the pulsator.  The period of this travelling wave approximately matches the pulsation 
frequency. That is, 1/(0.20463-0.2023) =  430 Hz., and pulse frequency is at 491 Hz.  

IV.  Conclusions 
 
An experimental study of the dynamics of a classical (simplex) swirl injector has revealed the behavior of the 

conical sheet formed near the injector exit and internal film within the vortex chamber.  A super-sized, transparent 
injector configuration was used with a unique pulsator design that periodically blocked and opened tangential inlet 
channels and in doing so provided high amplitude perturbations.  A 16 hole rotating cap was used to create the 
periodic blockage and measurements were successfully taken at frequencies as high as 500 Hz.  Manifold pressure 
measurements do indicate unsteadiness due to the pulsations induced by the operation of the rotating cap and the mean 
discharge characteristics of the device reveal that there may be some water hammer induced flow as the discharge 
coefficients exceed unity under most operating conditions.   

Observation of the dynamics of the conical sheet in the region near the nozzle exit provided an excellent means of 
assessing the dynamic response of the injector.  Data were repeatable at various axial stations and provided good 
signal/noise characteristics over a broad range of frequencies.   Resonant behavior was observed in these data as 
theorized in the recent work of Ismailov9.  Comparisons of the measured resonant frequencies with the theoretical 
results of Ismailov and Heister11 yielded poor results, but if the theory used an adjusted manifold pressure to reflect 
potential water hammer effects an excellent correlation was obtained.  Unfortunately, the experimental apparatus was 
not amenable to further exploration of water hammer effects and this would be a topic for further study. 

Finally, traveling waves of the type theorized by Bazarov6 were imaged within the vortex chamber at non-resonant 
conditions.  The speed of these waves correlated fairly well with the pulsation frequency. 
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